論文の概要: Kanana: Compute-efficient Bilingual Language Models
- arxiv url: http://arxiv.org/abs/2502.18934v3
- Date: Fri, 28 Feb 2025 14:23:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:44.010092
- Title: Kanana: Compute-efficient Bilingual Language Models
- Title(参考訳): Kanana: 計算効率の良いバイリンガル言語モデル
- Authors: Kanana LLM Team, Yunju Bak, Hojin Lee, Minho Ryu, Jiyeon Ham, Seungjae Jung, Daniel Wontae Nam, Taegyeong Eo, Donghun Lee, Doohae Jung, Boseop Kim, Nayeon Kim, Jaesun Park, Hyunho Kim, Hyunwoong Ko, Changmin Lee, Kyoung-Woon On, Seulye Baeg, Junrae Cho, Sunghee Jung, Jieun Kang, EungGyun Kim, Eunhwa Kim, Byeongil Ko, Daniel Lee, Minchul Lee, Miok Lee, Shinbok Lee, Gaeun Seo,
- Abstract要約: カナナ(Kanana)は、韓国語のパフォーマンスと英語の競争性能を超越した二言語モデルである。
このレポートでは、計算効率が良いが競争力のあるモデルを実現するために、事前学習で使用されるテクニックについて詳述している。
本報告では, 埋め込み, 検索拡張生成, 関数呼び出しなど, 特定のシナリオへの言語モデル適応に有効なアプローチについて詳述する。
- 参考スコア(独自算出の注目度): 9.597618914676106
- License:
- Abstract: We introduce Kanana, a series of bilingual language models that demonstrate exceeding performance in Korean and competitive performance in English. The computational cost of Kanana is significantly lower than that of state-of-the-art models of similar size. The report details the techniques employed during pre-training to achieve compute-efficient yet competitive models, including high quality data filtering, staged pre-training, depth up-scaling, and pruning and distillation. Furthermore, the report outlines the methodologies utilized during the post-training of the Kanana models, encompassing supervised fine-tuning and preference optimization, aimed at enhancing their capability for seamless interaction with users. Lastly, the report elaborates on plausible approaches used for language model adaptation to specific scenarios, such as embedding, retrieval augmented generation, and function calling. The Kanana model series spans from 2.1B to 32.5B parameters with 2.1B models (base, instruct, embedding) publicly released to promote research on Korean language models.
- Abstract(参考訳): 韓国語のパフォーマンスを超越し、英語の競争性能を示す一連のバイリンガル言語モデルであるKananaを紹介した。
カナナの計算コストは、類似サイズの最先端モデルの計算コストよりも大幅に低い。
このレポートでは、高品質なデータフィルタリング、ステージド事前トレーニング、深度アップスケーリング、プルーニングと蒸留など、計算効率のよい競争モデルを実現するために、事前トレーニングで使用されるテクニックについて詳述している。
さらに, ユーザとのシームレスな対話能力の向上を目的とした, 教師付き微調整と選好最適化を含む, カナナモデルのポストトレーニングで活用される方法論について概説した。
最後に、組み込み、検索拡張生成、関数呼び出しなど、特定のシナリオへの言語モデル適応に使用される妥当なアプローチについて詳述する。
カナナモデルシリーズは2.1Bから32.5Bのパラメータと2.1Bモデル(ベース、インストラクション、埋め込み)で、韓国語モデルの研究を促進するために公開された。
関連論文リスト
- The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
クロアチア語、セルビア語、ボスニア語、モンテネグロ語のベンチマークを設定しました。
我々は、利用可能な多言語モデルの追加事前学習により、専用のin-scratchモデルに匹敵する性能が得られることを示す。
また、Slovenianの場合、隣接する言語は、最終モデルの性能にほとんど、あるいは全く損なわない追加の事前訓練に含めることができることを示す。
論文 参考訳(メタデータ) (2024-04-08T11:55:44Z) - CroissantLLM: A Truly Bilingual French-English Language Model [42.03897426049679]
英語とフランス語のトークンセットを事前訓練した1.3B言語モデルであるCroissantLLMを紹介する。
我々は、英語とフランス語の事前学習データ比率1:1で、本質的なバイリンガルモデルを訓練するアプローチを開拓した。
英語以外のパフォーマンスを評価するため、新しいベンチマークである FrenchBench を作成します。
論文 参考訳(メタデータ) (2024-02-01T17:17:55Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - BasahaCorpus: An Expanded Linguistic Resource for Readability Assessment
in Central Philippine Languages [8.64545246732563]
我々は,フィリピンの低資源言語における可読性評価のためのコーパスとベースラインモデルの拡張を目的としたイニシアチブの一環として,BasahaCorpusを導入・リリースする。
私たちは、Hiligaynon、Minasbate、Karay-a、Rinconadaで書かれた短編物語のコーパスをまとめました。
本稿では,家系木に言語を配置し,利用可能なトレーニングデータの量を増やす階層型言語間モデリング手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T21:05:20Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
サブワードベースのモデルは、多くの設定において依然として最も実用的な選択肢であることを示している。
我々は,新しいモデルを設計し,評価する際のこれらの要因を検討するために,トークンフリーな手法の今後の取り組みを奨励する。
論文 参考訳(メタデータ) (2022-10-13T15:47:09Z) - From Good to Best: Two-Stage Training for Cross-lingual Machine Reading
Comprehension [51.953428342923885]
モデル性能を向上させるための2段階のアプローチを開発する。
我々は、トップk予測が正確な答えを含む確率を最大化するために、ハードラーニング(HL)アルゴリズムを設計する。
第2段階では, 正解と他の候補との微妙な違いを学習するために, 解答を意識したコントラスト学習機構が開発された。
論文 参考訳(メタデータ) (2021-12-09T07:31:15Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。