Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles
- URL: http://arxiv.org/abs/2502.18968v2
- Date: Fri, 28 Feb 2025 03:41:20 GMT
- Title: Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles
- Authors: Kuang Wang, Xianfei Li, Shenghao Yang, Li Zhou, Feng Jiang, Haizhou Li,
- Abstract summary: User simulators are crucial for replicating human interactions with dialogue systems.<n>We propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations.<n>USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency.
- Score: 37.43150003866563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
Related papers
- RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing [111.06936588273868]
RMTBench is a comprehensive textbfuser-centric bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds.<n>Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications.<n>By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements.
arXiv Detail & Related papers (2025-07-27T16:49:47Z) - PUB: An LLM-Enhanced Personality-Driven User Behaviour Simulator for Recommender System Evaluation [9.841963696576546]
Personality-driven User Behaviour Simulator (PUB) integrates the Big Five personality traits to model personalised user behaviour.<n>PUB dynamically infers user personality from behavioural logs (e.g., ratings, reviews) and item metadata, then generates synthetic interactions that preserve statistical fidelity to real-world data.<n> Experiments on the Amazon review datasets show that logs generated by PUB closely align with real user behaviour and reveal meaningful associations between personality traits and recommendation outcomes.
arXiv Detail & Related papers (2025-06-05T01:57:36Z) - Teaching Language Models to Evolve with Users: Dynamic Profile Modeling for Personalized Alignment [35.68913976348608]
We introduce the Reinforcement Learning for Personalized Alignment (RLPA) framework to iteratively infer and refine user profiles through dialogue.<n>We instantiate RLPA by fine-tuning Qwen-2.5-3B-Instruct, resulting in Qwen-RLPA, which achieves state-of-the-art performance in personalized dialogue.
arXiv Detail & Related papers (2025-05-21T12:38:36Z) - A Personalized Conversational Benchmark: Towards Simulating Personalized Conversations [112.81207927088117]
PersonaConvBench is a benchmark for evaluating personalized reasoning and generation in multi-turn conversations with large language models (LLMs)<n>We benchmark several commercial and open-source LLMs under a unified prompting setup and observe that incorporating personalized history yields substantial performance improvements.
arXiv Detail & Related papers (2025-05-20T09:13:22Z) - EdgeWisePersona: A Dataset for On-Device User Profiling from Natural Language Interactions [0.6650227510403052]
This paper introduces a novel dataset designed to assess and improve small language models deployable on edge devices.<n>At the core of the dataset are structured user profiles, each defined by a set of routines.<n>A large language model (LLM) generates corresponding interaction sessions that simulate realistic, diverse, and context-aware dialogues.
arXiv Detail & Related papers (2025-05-16T16:29:21Z) - Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)<n>The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.<n> Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
arXiv Detail & Related papers (2025-04-09T13:21:17Z) - FSPO: Few-Shot Preference Optimization of Synthetic Preference Data in LLMs Elicits Effective Personalization to Real Users [111.56469697145519]
We propose Few-Shot Preference Optimization, which reframes reward modeling as a meta-learning problem.
Under this framework, an LLM learns to quickly adapt to a user via a few labeled preferences from that user, constructing a personalized reward function for them.
We generate over 1M synthetic personalized preferences using publicly available LLMs.
We evaluate FSPO on personalized open-ended generation for up to 1,500 synthetic users across three domains: movie reviews, pedagogical adaptation based on educational background, and general question answering, along with a controlled human study.
arXiv Detail & Related papers (2025-02-26T17:08:46Z) - LLM-Powered User Simulator for Recommender System [29.328839982869923]
We introduce an LLM-powered user simulator to simulate user engagement with items in an explicit manner.
Specifically, we identify the explicit logic of user preferences, leverage LLMs to analyze item characteristics and distill user sentiments.
We propose an ensemble model that synergizes logical and statistical insights for user interaction simulations.
arXiv Detail & Related papers (2024-12-22T12:00:04Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Towards a Formal Characterization of User Simulation Objectives in Conversational Information Access [15.54070473873364]
User simulation is a promising approach for automatically training and evaluating conversational information access agents.
We define the distinct objectives for user simulators: training aims to maximize behavioral similarity to real users, while evaluation focuses on the accurate prediction of real-world conversational agent performance.
arXiv Detail & Related papers (2024-06-27T08:46:41Z) - Lusifer: LLM-based User SImulated Feedback Environment for online Recommender systems [0.0]
Reinforcement learning (RL) recommender systems often rely on static datasets that fail to capture the fluid, ever changing nature of user preferences in real-world scenarios.
We introduce Lusifer, an LLM-based simulation environment designed to generate dynamic, realistic user feedback for RL-based recommender training.
arXiv Detail & Related papers (2024-05-22T05:43:15Z) - DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues [7.765092134290888]
This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging large language models.
DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification.
We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness.
arXiv Detail & Related papers (2024-05-16T06:24:31Z) - Reliable LLM-based User Simulator for Task-Oriented Dialogue Systems [2.788542465279969]
This paper introduces DAUS, a Domain-Aware User Simulator.
We fine-tune DAUS on real examples of task-oriented dialogues.
Results on two relevant benchmarks showcase significant improvements in terms of user goal fulfillment.
arXiv Detail & Related papers (2024-02-20T20:57:47Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - SimOAP: Improve Coherence and Consistency in Persona-based Dialogue
Generation via Over-sampling and Post-evaluation [54.66399120084227]
Language models trained on large-scale corpora can generate remarkably fluent results in open-domain dialogue.
For the persona-based dialogue generation task, consistency and coherence are great challenges for language models.
A two-stage SimOAP strategy is proposed, i.e., over-sampling and post-evaluation.
arXiv Detail & Related papers (2023-05-18T17:23:00Z) - Metaphorical User Simulators for Evaluating Task-oriented Dialogue
Systems [80.77917437785773]
Task-oriented dialogue systems ( TDSs) are assessed mainly in an offline setting or through human evaluation.
We propose a metaphorical user simulator for end-to-end TDS evaluation, where we define a simulator to be metaphorical if it simulates user's analogical thinking in interactions with systems.
We also propose a tester-based evaluation framework to generate variants, i.e., dialogue systems with different capabilities.
arXiv Detail & Related papers (2022-04-02T05:11:03Z) - Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward
Decomposition [64.06167416127386]
We propose Multi-Agent Dialog Policy Learning, which regards both the system and the user as the dialog agents.
Two agents interact with each other and are jointly learned simultaneously.
Results show that our method can successfully build a system policy and a user policy simultaneously.
arXiv Detail & Related papers (2020-04-08T04:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.