PUB: An LLM-Enhanced Personality-Driven User Behaviour Simulator for Recommender System Evaluation
- URL: http://arxiv.org/abs/2506.04551v1
- Date: Thu, 05 Jun 2025 01:57:36 GMT
- Title: PUB: An LLM-Enhanced Personality-Driven User Behaviour Simulator for Recommender System Evaluation
- Authors: Chenglong Ma, Ziqi Xu, Yongli Ren, Danula Hettiachchi, Jeffrey Chan,
- Abstract summary: Personality-driven User Behaviour Simulator (PUB) integrates the Big Five personality traits to model personalised user behaviour.<n>PUB dynamically infers user personality from behavioural logs (e.g., ratings, reviews) and item metadata, then generates synthetic interactions that preserve statistical fidelity to real-world data.<n> Experiments on the Amazon review datasets show that logs generated by PUB closely align with real user behaviour and reveal meaningful associations between personality traits and recommendation outcomes.
- Score: 9.841963696576546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional offline evaluation methods for recommender systems struggle to capture the complexity of modern platforms due to sparse behavioural signals, noisy data, and limited modelling of user personality traits. While simulation frameworks can generate synthetic data to address these gaps, existing methods fail to replicate behavioural diversity, limiting their effectiveness. To overcome these challenges, we propose the Personality-driven User Behaviour Simulator (PUB), an LLM-based simulation framework that integrates the Big Five personality traits to model personalised user behaviour. PUB dynamically infers user personality from behavioural logs (e.g., ratings, reviews) and item metadata, then generates synthetic interactions that preserve statistical fidelity to real-world data. Experiments on the Amazon review datasets show that logs generated by PUB closely align with real user behaviour and reveal meaningful associations between personality traits and recommendation outcomes. These results highlight the potential of the personality-driven simulator to advance recommender system evaluation, offering scalable, controllable, high-fidelity alternatives to resource-intensive real-world experiments.
Related papers
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations.<n>We propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs.
arXiv Detail & Related papers (2025-04-29T06:37:30Z) - SimUSER: Simulating User Behavior with Large Language Models for Recommender System Evaluation [1.2430809884830318]
We introduce Sim, an agent framework that serves as believable and cost-effective human proxies.<n>Sim identifies self-consistent personas from historical data, enriching user profiles with unique backgrounds and personalities.<n>We conduct experiments to explore the effects of thumbnails on click rates, the exposure effect, and the impact of reviews on user engagement.
arXiv Detail & Related papers (2025-04-17T07:57:23Z) - Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)<n>The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.<n> Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
arXiv Detail & Related papers (2025-04-09T13:21:17Z) - Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles [37.43150003866563]
We introduce the User Simulator with Implicit Profiles (USP), a framework that infers implicit user profiles from human-machine interactions to simulate personalized and realistic dialogues.<n>USP outperforms strong baselines in terms of authenticity and diversity while maintaining comparable consistency.
arXiv Detail & Related papers (2025-02-26T09:26:54Z) - LLM-Powered User Simulator for Recommender System [29.328839982869923]
We introduce an LLM-powered user simulator to simulate user engagement with items in an explicit manner.<n>Specifically, we identify the explicit logic of user preferences, leverage LLMs to analyze item characteristics and distill user sentiments.<n>We propose an ensemble model that synergizes logical and statistical insights for user interaction simulations.
arXiv Detail & Related papers (2024-12-22T12:00:04Z) - Flexible Generation of Preference Data for Recommendation Analysis [1.384948712833979]
HYDRA is a novel data generation model driven by three main factors: user-item interaction level, item popularity, and user engagement level.<n>We demonstrate the effectiveness of HYDRA through extensive experiments on well-known benchmark datasets.
arXiv Detail & Related papers (2024-07-23T15:53:17Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Lusifer: LLM-based User SImulated Feedback Environment for online Recommender systems [0.0]
Reinforcement learning (RL) recommender systems often rely on static datasets that fail to capture the fluid, ever changing nature of user preferences in real-world scenarios.<n>We introduce Lusifer, an LLM-based simulation environment designed to generate dynamic, realistic user feedback for RL-based recommender training.
arXiv Detail & Related papers (2024-05-22T05:43:15Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
arXiv Detail & Related papers (2024-04-04T10:54:38Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.