Dealing with Inconsistency for Reasoning over Knowledge Graphs: A Survey
- URL: http://arxiv.org/abs/2502.19023v1
- Date: Wed, 26 Feb 2025 10:30:22 GMT
- Title: Dealing with Inconsistency for Reasoning over Knowledge Graphs: A Survey
- Authors: Anastasios Nentidis, Charilaos Akasiadis, Angelos Charalambidis, Alexander Artikis,
- Abstract summary: We focus on how to perform reasoning on inconsistent Knowledge Graphs (KGs)<n>We analyze the state of the art towards three complementary directions: a) the detection of the parts of the KG that cause the inconsistency, b) the fixing of an inconsistent KG to render it consistent, and c) the inconsistency-tolerant reasoning.
- Score: 44.00265764798789
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Knowledge Graphs (KGs), where the schema of the data is usually defined by particular ontologies, reasoning is a necessity to perform a range of tasks, such as retrieval of information, question answering, and the derivation of new knowledge. However, information to populate KGs is often extracted (semi-) automatically from natural language resources, or by integrating datasets that follow different semantic schemas, resulting in KG inconsistency. This, however, hinders the process of reasoning. In this survey, we focus on how to perform reasoning on inconsistent KGs, by analyzing the state of the art towards three complementary directions: a) the detection of the parts of the KG that cause the inconsistency, b) the fixing of an inconsistent KG to render it consistent, and c) the inconsistency-tolerant reasoning. We discuss existing work from a range of relevant fields focusing on how, and in which cases they are related to the above directions. We also highlight persisting challenges and future directions.
Related papers
- Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models [51.47994645529258]
We propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance.
Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
arXiv Detail & Related papers (2025-03-30T17:09:11Z) - Ontology-grounded Automatic Knowledge Graph Construction by LLM under Wikidata schema [60.42231674887294]
We propose an ontology-grounded approach to Knowledge Graph (KG) construction using Large Language Models (LLMs) on a knowledge base.<n>We ground generation of KG with the authored ontology based on extracted relations to ensure consistency and interpretability.<n>Our work presents a promising direction for scalable KG construction pipeline with minimal human intervention, that yields high quality and human-interpretable KGs.
arXiv Detail & Related papers (2024-12-30T13:36:05Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
We propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability.
To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer.
Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively.
arXiv Detail & Related papers (2024-10-16T06:47:18Z) - Context Graph [8.02985792541121]
We present a context graph reasoning textbfCGR$3$ paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts.
Our experimental results demonstrate that CGR$3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks.
arXiv Detail & Related papers (2024-06-17T02:59:19Z) - Uncertainty Management in the Construction of Knowledge Graphs: a Survey [3.5639148953570845]
Knowledge Graphs (KGs) are a major asset for companies thanks to their great flexibility in data representation.
To build a KG it is a common practice to rely on automatic methods for extracting knowledge from various heterogeneous sources.
In a noisy and uncertain world, knowledge may not be reliable and conflicts between data sources may occur.
arXiv Detail & Related papers (2024-05-27T08:22:52Z) - Federated Neural Graph Databases [53.03085605769093]
We propose Federated Neural Graph Database (FedNGDB), a novel framework that enables reasoning over multi-source graph-based data while preserving privacy.
Unlike existing methods, FedNGDB can handle complex graph structures and relationships, making it suitable for various downstream tasks.
arXiv Detail & Related papers (2024-02-22T14:57:44Z) - Reasoning over Multi-view Knowledge Graphs [59.99051368907095]
ROMA is a novel framework for answering logical queries over multi-view KGs.
It scales up to KGs of large sizes (e.g., millions of facts) and fine-granular views.
It generalizes to query structures and KG views that are unobserved during training.
arXiv Detail & Related papers (2022-09-27T21:32:20Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLM is a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations.
We show that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
arXiv Detail & Related papers (2022-01-21T19:00:05Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z) - Understanding Knowledge Gaps in Visual Question Answering: Implications
for Gap Identification and Testing [20.117014315684287]
We use a taxonomy of Knowledge Gaps (KGs) to tag questions with one or more types of KGs.
We then examine the skew in the distribution of questions for each KG.
These new questions can be added to existing VQA datasets to increase the diversity of questions and reduce the skew.
arXiv Detail & Related papers (2020-04-08T00:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.