論文の概要: PolypFlow: Reinforcing Polyp Segmentation with Flow-Driven Dynamics
- arxiv url: http://arxiv.org/abs/2502.19037v1
- Date: Wed, 26 Feb 2025 10:48:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:35.610205
- Title: PolypFlow: Reinforcing Polyp Segmentation with Flow-Driven Dynamics
- Title(参考訳): PolypFlow: フロー駆動ダイナミクスによるPolypセグメンテーションの強化
- Authors: Pu Wang, Huaizhi Ma, Zhihua Zhang, Zhuoran Zheng,
- Abstract要約: PolypFLowは、セグメンテーションの洗練に物理にインスパイアされた最適化力学を注入するフローマッチング拡張アーキテクチャである。
我々はPolypFLowが様々な照明シナリオで一貫した性能を維持しながら最先端を実現していることを示す。
- 参考スコア(独自算出の注目度): 25.69584903128262
- License:
- Abstract: Accurate polyp segmentation remains challenging due to irregular lesion morphologies, ambiguous boundaries, and heterogeneous imaging conditions. While U-Net variants excel at local feature fusion, they often lack explicit mechanisms to model the dynamic evolution of segmentation confidence under uncertainty. Inspired by the interpretable nature of flow-based models, we present \textbf{PolypFLow}, a flow-matching enhanced architecture that injects physics-inspired optimization dynamics into segmentation refinement. Unlike conventional cascaded networks, our framework solves an ordinary differential equation (ODE) to progressively align coarse initial predictions with ground truth masks through learned velocity fields. This trajectory-based refinement offers two key advantages: 1) Interpretable Optimization: Intermediate flow steps visualize how the model corrects under-segmented regions and sharpens boundaries at each ODE-solver iteration, demystifying the ``black-box" refinement process; 2) Boundary-Aware Robustness: The flow dynamics explicitly model gradient directions along polyp edges, enhancing resilience to low-contrast regions and motion artifacts. Numerous experimental results show that PolypFLow achieves a state-of-the-art while maintaining consistent performance in different lighting scenarios.
- Abstract(参考訳): 不規則な病変形態、曖昧な境界、不均一な画像条件のために、正確なポリプセグメンテーションは依然として困難である。
U-Netの変種は局所的特徴融合において優れているが、不確実性の下でセグメンテーション信頼の動的進化をモデル化する明確なメカニズムを欠くことが多い。
フローベースモデルの解釈可能な性質にインスパイアされたフローマッチング拡張アーキテクチャである \textbf{PolypFLow} について述べる。
従来のカスケードネットワークとは異なり、我々のフレームワークは通常の微分方程式(ODE)を解くことで、学習速度場を通して、粗い初期予測を地上の真理マスクと漸進的に整合させる。
この軌道に基づく改良は2つの大きな利点をもたらす。
1) 解釈可能な最適化: 中間フローステップは、モデルが未分割領域をどのように修正し、それぞれのODE-ゾルバイテレーションで境界をシャープするかを視覚化し、 ‘black-box’リファインメントプロセスをデミストする。
2) 境界認識ロバスト性: 流れのダイナミクスは, ポリープエッジに沿った勾配方向を明示的にモデル化し, 低コントラスト領域や運動アーティファクトへの弾力性を高める。
多くの実験結果から、PolypFLowは様々な照明シナリオにおける一貫した性能を維持しつつ、最先端を実現していることが示された。
関連論文リスト
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection [19.308304984645684]
マルチフィンガーハンドの多様なグリップを生成できる新しいモデルを提案する。
提案手法は, 高いベースラインに対する性能向上と実行時の効率向上を実現する。
また,現実世界の雑多な作業空間や密集した作業空間において,より多様性の高いオブジェクトを把握できることのメリットも示している。
論文 参考訳(メタデータ) (2024-07-21T13:33:08Z) - AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields [14.219495227765671]
本稿では、局所的なニューラルネットワークを用いた偏微分方程式(PDE)のモデリングを強化するためのフレームワークであるAROMAを提案する。
我々のフレキシブルエンコーダ・デコーダアーキテクチャは、様々なデータタイプから空間物理場のスムーズな遅延表現を得ることができる。
拡散型定式化を用いることで、従来のMSEトレーニングと比較して安定性が向上し、ロールアウトが長くなる。
論文 参考訳(メタデータ) (2024-06-04T10:12:09Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
我々は、連続するフレームから中間光の流れを直接推定する動き対応ビデオフレーム補間(MA-VFI)ネットワークを導入する。
受容場が異なる入力フレームからグローバルな意味関係と空間的詳細を抽出するだけでなく、必要な計算コストと複雑さを効果的に削減する。
論文 参考訳(メタデータ) (2024-02-05T11:00:14Z) - Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape [40.78854925996]
Transformerアーキテクチャに基づく大規模言語モデルは、コンテキストで学習できる印象的な能力を示している。
共通非線形表現や特徴写像は、文脈内学習の力を高めるために利用できることを示す。
論文 参考訳(メタデータ) (2024-02-02T09:29:40Z) - Reflected Schr\"odinger Bridge for Constrained Generative Modeling [16.72888494254555]
反射拡散モデルは、現実の応用における大規模生成モデルのゴートメソッドとなっている。
本稿では,様々な領域内でデータを生成するために最適化されたエントロピー規則化された最適輸送手法であるReflectioned Schrodinger Bridgeアルゴリズムを紹介する。
提案アルゴリズムは,多様な領域におけるロバストな生成モデリングを実現し,そのスケーラビリティは,標準画像ベンチマークによる実世界の制約付き生成モデリングにおいて実証される。
論文 参考訳(メタデータ) (2024-01-06T14:39:58Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。