論文の概要: AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields
- arxiv url: http://arxiv.org/abs/2406.02176v3
- Date: Mon, 21 Oct 2024 15:37:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:11:39.905963
- Title: AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields
- Title(参考訳): AROMA:局所ニューラルネットワークを用いた潜在PDEモデリングのための空間構造保存
- Authors: Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noël Vittaut, Patrick Gallinari,
- Abstract要約: 本稿では、局所的なニューラルネットワークを用いた偏微分方程式(PDE)のモデリングを強化するためのフレームワークであるAROMAを提案する。
我々のフレキシブルエンコーダ・デコーダアーキテクチャは、様々なデータタイプから空間物理場のスムーズな遅延表現を得ることができる。
拡散型定式化を用いることで、従来のMSEトレーニングと比較して安定性が向上し、ロールアウトが長くなる。
- 参考スコア(独自算出の注目度): 14.219495227765671
- License:
- Abstract: We present AROMA (Attentive Reduced Order Model with Attention), a framework designed to enhance the modeling of partial differential equations (PDEs) using local neural fields. Our flexible encoder-decoder architecture can obtain smooth latent representations of spatial physical fields from a variety of data types, including irregular-grid inputs and point clouds. This versatility eliminates the need for patching and allows efficient processing of diverse geometries. The sequential nature of our latent representation can be interpreted spatially and permits the use of a conditional transformer for modeling the temporal dynamics of PDEs. By employing a diffusion-based formulation, we achieve greater stability and enable longer rollouts compared to conventional MSE training. AROMA's superior performance in simulating 1D and 2D equations underscores the efficacy of our approach in capturing complex dynamical behaviors.
- Abstract(参考訳): 本稿では、局所的なニューラルネットワークを用いた偏微分方程式(PDE)のモデリングを強化するためのフレームワークであるAROMAを提案する。
我々のフレキシブルエンコーダデコーダアーキテクチャは、不規則なグリッド入力や点雲を含む様々なデータタイプから、空間物理場のスムーズな遅延表現を得ることができる。
この汎用性はパッチの必要性を排除し、多様なジオメトリの効率的な処理を可能にする。
潜在表現のシーケンシャルな性質は空間的に解釈することができ、PDEの時間的ダイナミクスをモデル化するための条件変換器の使用を可能にする。
拡散型定式化を用いることで、従来のMSEトレーニングと比較して安定性が向上し、ロールアウトが長くなる。
1次元方程式と2次元方程式のシミュレーションにおけるAROMAの優れた性能は、複雑な力学挙動を捉える上でのアプローチの有効性を裏付けるものである。
関連論文リスト
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - On latent dynamics learning in nonlinear reduced order modeling [0.6249768559720122]
本稿では,パラメータ化非線形時間依存PDEの次数モデリングのための潜在力学モデル(LDM)の数学的枠組みを提案する。
フルオーダーモデル (FOM) 解の LDM 近似に対する誤差と安定性の推定を導出するために, 時間連続的な設定を用いる。
ディープニューラルネットワークは離散LDM成分を近似し、FOMに関して有界近似誤差を提供する。
論文 参考訳(メタデータ) (2024-08-27T16:35:06Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
格子独立モデル学習偏微分方程式(PDE)を雑音および不規則格子上の部分的な観測から導入する。
本稿では、効率的な確率的フレームワークとデータ効率とグリッド独立性を改善するための新しい設計エンコーダを備えた時空間連続型ニューラルネットワークPDEモデルを提案する。
論文 参考訳(メタデータ) (2023-07-09T06:53:59Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。