論文の概要: Software demodulation of weak radio signals using convolutional neural network
- arxiv url: http://arxiv.org/abs/2502.19097v1
- Date: Wed, 26 Feb 2025 12:41:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:15.576888
- Title: Software demodulation of weak radio signals using convolutional neural network
- Title(参考訳): 畳み込みニューラルネットワークを用いた弱無線信号のソフトウェア復調
- Authors: Mykola Kozlenko, Ihor Lazarovych, Valerii Tkachuk, Vira Vialkova,
- Abstract要約: JT65A通信プロトコルで伝送される弱信号に対する多重周波数シフト鍵のソフトウェア復調について検討した。
干渉免疫は, MFSK信号の非コヒーレント復調の理論的限界よりも1.5dB小さいことが証明された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we proposed the use of JT65A radio communication protocol for data exchange in wide-area monitoring systems in electric power systems. We investigated the software demodulation of the multiple frequency shift keying weak signals transmitted with JT65A communication protocol using deep convolutional neural network. We presented the demodulation performance in form of symbol and bit error rates. We focused on the interference immunity of the protocol over an additive white Gaussian noise with average signal-to-noise ratios in the range from -30 dB to 0 dB, which was obtained for the first time. We proved that the interference immunity is about 1.5 dB less than the theoretical limit of non-coherent demodulation of orthogonal MFSK signals.
- Abstract(参考訳): 本稿では,電力システムにおける広域監視システムにおけるデータ交換におけるJT65A無線通信プロトコルの利用を提案する。
深部畳み込みニューラルネットワークを用いたJT65A通信プロトコルで伝送される弱信号に対する多重周波数シフト鍵のソフトウェア復調について検討した。
我々はシンボルとビット誤り率という形で復調性能を示した。
平均信号-雑音比が-30dBから0dBの範囲で, 付加的な白色ガウス雑音に対するプロトコルの干渉免疫性に着目し, 初めて得られた。
干渉免疫は直交MFSK信号の非コヒーレント復調の理論的限界よりも1.5dB小さいことが証明された。
関連論文リスト
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
本稿では、新しいデータ駆動手法を用いて、高周波信号における干渉拒否の重大な問題に対処する。
まず、干渉除去アルゴリズムの開発と解析の基礎となる洞察に富んだ信号モデルを提案する。
第2に,さまざまなRF信号とコードテンプレートを備えた公開データセットであるRF Challengeを紹介する。
第3に,UNetやWaveNetなどのアーキテクチャにおいて,新しいAIに基づく拒絶アルゴリズムを提案し,その性能を8種類の信号混合タイプで評価する。
論文 参考訳(メタデータ) (2024-09-13T13:53:41Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Deep Learning-Based Frequency Offset Estimation [7.143765507026541]
残差ネットワーク(ResNet)を用いて信号の特徴を学習し抽出することで,CFO推定におけるディープラーニングの利用について述べる。
従来のCFO推定法と比較して,提案手法は様々なシナリオにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-11-08T13:56:22Z) - Waveform Manipulation Against DNN-based Modulation Classification Attacks [2.8475397246467575]
本稿では,無線通信信号の変調学習にDeep Neural Network (DNN) を用いた盗聴者に対する防御手法を提案する。
本手法は,変調データと混合した連続時間周波数変調(FM)難読化信号を用いて出力波形を操作することに基づく。
その結果, 難聴波形のパラメータを慎重に選択することで, AWGNでは10%未満に, LRxでは性能損失が無く, フェーディングチャネルでは10%以下に分類性能を低下させることができることがわかった。
論文 参考訳(メタデータ) (2023-10-03T09:03:34Z) - Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
畳み込みニューラルネットワーク(CNN)の近代的アーキテクチャを用いた自動変調分類(AMC)手法を提案する。
我々は、受信したI/Qデータから99.61%の計算負荷削減と8倍の高速変換をもたらす分光器の分解能変換を行う。
この性能は、SqueezeNet、Resnet-50、InceptionResnet-V2、Inception-V3、VGG-16、Densenet-201といった既存のCNNモデルで評価される。
論文 参考訳(メタデータ) (2023-06-06T16:14:15Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - Deep Learning for Spectral Filling in Radio Frequency Applications [0.7829352305480285]
本稿では、スペクトルフィリングにディープニューラルネットワークを適用する方法を提案する。
我々は、付加的なメッセージの形で、固定変調信号の「周辺」として、追加情報を送るための新しい変調スキームを学習する。
これにより、帯域幅を増大させることなく、チャネル容量を効果的に増やすことができる。
論文 参考訳(メタデータ) (2022-03-31T20:31:54Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
本稿では,送信受信フィルタ,星座形状,それに付随するビットラベリング,およびニューラルネットワーク(NN)ベースの検出器の結合設計のための学習に基づく手法を提案する。
この方法は、隣接するチャネルリーク比(ACLR)とピーク・ツー・アベイジ・パワー比(PAPR)の制約を同時に満たしつつ、達成可能な情報レートを最大化する。
論文 参考訳(メタデータ) (2021-09-02T14:51:16Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。