論文の概要: Software defined demodulation of multiple frequency shift keying with dense neural network for weak signal communications
- arxiv url: http://arxiv.org/abs/2502.16371v1
- Date: Sat, 22 Feb 2025 22:21:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:04.397398
- Title: Software defined demodulation of multiple frequency shift keying with dense neural network for weak signal communications
- Title(参考訳): 弱信号通信のための高密度ニューラルネットワークを用いた多重周波数シフト鍵の復調ソフトウェア
- Authors: Mykola Kozlenko, Vira Vialkova,
- Abstract要約: 弱信号デジタル通信システムにおけるシンボルとビット誤り率の性能について述べる。
平均信号-雑音比が-20dBから0dBの付加白色ガウス雑音に対する干渉について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we present the symbol and bit error rate performance of the weak signal digital communications system. We investigate orthogonal multiple frequency shift keying modulation scheme with supervised machine learning demodulation approach using simple dense end-to-end artificial neural network. We focus on the interference immunity over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.
- Abstract(参考訳): 本稿では,弱信号ディジタル通信システムにおけるシンボルとビット誤り率の性能について述べる。
直交多重周波数シフト変調方式を, ニューラルネットワークを用いた教師付き機械学習復調法を用いて検討した。
平均信号-雑音比が-20dBから0dBの付加白色ガウス雑音に対する干渉免疫に着目した。
関連論文リスト
- Deep Learning-Based Frequency Offset Estimation [7.143765507026541]
残差ネットワーク(ResNet)を用いて信号の特徴を学習し抽出することで,CFO推定におけるディープラーニングの利用について述べる。
従来のCFO推定法と比較して,提案手法は様々なシナリオにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-11-08T13:56:22Z) - Waveform Manipulation Against DNN-based Modulation Classification Attacks [2.8475397246467575]
本稿では,無線通信信号の変調学習にDeep Neural Network (DNN) を用いた盗聴者に対する防御手法を提案する。
本手法は,変調データと混合した連続時間周波数変調(FM)難読化信号を用いて出力波形を操作することに基づく。
その結果, 難聴波形のパラメータを慎重に選択することで, AWGNでは10%未満に, LRxでは性能損失が無く, フェーディングチャネルでは10%以下に分類性能を低下させることができることがわかった。
論文 参考訳(メタデータ) (2023-10-03T09:03:34Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Learning Based Joint Coding-Modulation for Digital Semantic
Communication Systems [45.81474044790071]
学習に基づくセマンティックコミュニケーションでは、ニューラルネットワークは従来の通信システムで異なるビルディングブロックを置き換える。
ニューラルネットワークに基づくデジタル変調の本質的なメカニズムは、ニューラルネットワークエンコーダの連続的な出力を離散的なコンステレーションシンボルにマッピングすることである。
我々は,BPSK変調を用いたディジタルセマンティック通信のための共同符号化変調方式を開発した。
論文 参考訳(メタデータ) (2022-08-11T08:58:35Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
提案手法は、まずゼロフォース検出器(ZF)を用いて受信信号を前処理し、その後、畳み込みニューラルネットワーク(CNN)と完全連結ニューラルネットワーク(FCNN)からなるニューラルネットワークを用いる。
FCNN部は2つの完全に接続された層しか使用せず、複雑さとBER(bit error rate)パフォーマンスのトレードオフをもたらすことができる。
提案したディープ畳み込みニューラルネットワークに基づく検出・復調方式は,ZF検出器よりも高いBER性能を示し,複雑性が増大することが実証されている。
論文 参考訳(メタデータ) (2022-02-06T22:18:42Z) - Digital Signal Processing Using Deep Neural Networks [2.624902795082451]
本稿では、RF領域の問題を解決するために特別に設計されたカスタムディープニューラルネットワーク(DNN)を提案する。
本モデルは,自動エンコーダ畳み込みネットワークと変圧器ネットワークを組み合わせることで,特徴抽出と注意のメカニズムを活用する。
また,DNNをトレーニングし,自動変調分類を行い,伝送路効果を推測・補正し,ベースバンドRF信号を直接復調することのできる,新しいオープンデータセットと物理データ拡張モデルを提案する。
論文 参考訳(メタデータ) (2021-09-21T18:59:32Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Variational Autoencoders: A Harmonic Perspective [79.49579654743341]
本研究では,高調波解析の観点から変分オートエンコーダ(VAE)について検討する。
VAEのエンコーダ分散は、VAEエンコーダとデコーダニューラルネットワークによってパラメータ化された関数の周波数内容を制御する。
論文 参考訳(メタデータ) (2021-05-31T10:39:25Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
論文 参考訳(メタデータ) (2021-03-01T08:25:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。