論文の概要: Analyzing Cost-Sensitive Surrogate Losses via $\mathcal{H}$-calibration
- arxiv url: http://arxiv.org/abs/2502.19522v1
- Date: Wed, 26 Feb 2025 19:46:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:49.832216
- Title: Analyzing Cost-Sensitive Surrogate Losses via $\mathcal{H}$-calibration
- Title(参考訳): $\mathcal{H}$-calibrationによるコスト感受性サロゲート損失の解析
- Authors: Sanket Shah, Milind Tambe, Jessie Finocchiaro,
- Abstract要約: 本稿では,コスト依存型サロゲートやコスト依存型モデルを用いて機械学習モデルをトレーニングすべきかどうかを理解することを目的とする。
コストに敏感なサロゲートは、共通の分布仮定の下で小さなモデルを学ぶ際に、コスト非依存のサロゲートを厳密に上回ります。
- 参考スコア(独自算出の注目度): 28.549898537165525
- License:
- Abstract: This paper aims to understand whether machine learning models should be trained using cost-sensitive surrogates or cost-agnostic ones (e.g., cross-entropy). Analyzing this question through the lens of $\mathcal{H}$-calibration, we find that cost-sensitive surrogates can strictly outperform their cost-agnostic counterparts when learning small models under common distributional assumptions. Since these distributional assumptions are hard to verify in practice, we also show that cost-sensitive surrogates consistently outperform cost-agnostic surrogates on classification datasets from the UCI repository. Together, these make a strong case for using cost-sensitive surrogates in practice.
- Abstract(参考訳): 本稿では,コスト依存型サロゲートやコスト非依存型モデル(例えば,クロスエントロピー)を用いて機械学習モデルをトレーニングすべきかどうかを理解することを目的とする。
この問題を$\mathcal{H}$-calibrationのレンズで解析すると、コスト感受性のサロゲートは、共通の分布仮定の下で小さなモデルを学ぶ際に、コスト依存のサロゲートよりも厳密に優れていることが分かる。
これらの分布仮定は実際は検証が難しいため、コスト感受性のサロゲートはUCIレポジトリの分類データセットにおけるコスト非依存サロゲートよりも一貫して優れていることを示す。
これらは共に、実際にコスト感受性のサロゲートを使用することを強く主張する。
関連論文リスト
- Of Dice and Games: A Theory of Generalized Boosting [61.752303337418475]
我々は、コスト感受性と多目的損失の両方を組み込むために、ブースティングの有名な理論を拡張した。
我々は、コスト感受性と多目的強化の包括的理論を開発し、弱い学習保証の分類を提供する。
我々の特徴付けは、昇降の幾何学的解釈に依存しており、コスト感受性と多目的損失の間の驚くべき等価性を明らかにしている。
論文 参考訳(メタデータ) (2024-12-11T01:38:32Z) - $F_β$-plot -- a visual tool for evaluating imbalanced data classifiers [0.0]
本稿では、一般的なパラメトリック計量である$F_beta$を分析するための簡単なアプローチを提案する。
分析された分類器のプールに対して、あるモデルがユーザの要求に応じて好まれるべき場合を示すことができる。
論文 参考訳(メタデータ) (2024-04-11T18:07:57Z) - Scalable Learning of Item Response Theory Models [48.91265296134559]
項目応答理論(IRT)モデルは、分類データから、$m$テスト項目の遅延困難特性とともに、$n$試験の潜時能力を評価することを目的としている。
我々はこれらのモデルの類似性をロジスティック回帰に利用し、コアセットと呼ばれる小さな重み付き部分集合を用いて正確に近似することができる。
論文 参考訳(メタデータ) (2024-03-01T17:12:53Z) - Provably Robust Cost-Sensitive Learning via Randomized Smoothing [21.698527267902158]
我々は、ロバストネス認定のためのスケーラブルなフレームワークであるランダム化スムーシングが、コスト感受性のロバストネスの認定とトレーニングに活用できるかどうかを検討する。
まず、ランダム化スムージングの標準的な認証アルゴリズムを適用して、任意のバイナリコスト行列に対して厳密な堅牢性証明を生成する方法について説明する。
そこで我々は,モデル全体の精度を維持しつつ,信頼性の高いコスト感受性を向上するためのロバストなトレーニング手法を開発した。
論文 参考訳(メタデータ) (2023-10-12T21:39:16Z) - Statistically Valid Variable Importance Assessment through Conditional
Permutations [19.095605415846187]
Conditional Permutation Importanceは、変数の重要度評価に対する新しいアプローチである。
我々は、$textitCPI$が、正確な型Iエラー制御を提供することで、標準置換の重要性の限界を克服していることを示す。
この結果から,$textitCPI$は置換型メソッドのドロップイン置換として簡単に利用できることが示唆された。
論文 参考訳(メタデータ) (2023-09-14T10:53:36Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
ブラインドソース分離(BSS)は、変換$f$が可逆であるが未知であるという条件の下で、その混合である$X=f(S)$から観測されていない信号を復元することを目的としている。
このような違反を分析し、その影響を$X$から$S$のブラインドリカバリに与える影響を定量化するための一般的なフレームワークを提案する。
定義された構造的仮定からの偏差に対する一般的なBSS溶出は、明示的な連続性保証という形で、利益的に分析可能であることを示す。
論文 参考訳(メタデータ) (2023-03-17T16:30:51Z) - Cost-Sensitive Stacking: an Empirical Evaluation [3.867363075280544]
コスト感受性学習は、誤分類コストの違いを考慮に入れた分類アルゴリズムに適応する。
コストに敏感なスタックとは何か、という文献には意見の一致がない。
実験は12のデータセットを用いて行われ、最高の性能を得るためには、どちらのレベルの積み重ねもコストに敏感な分類決定を必要とすることを示した。
論文 参考訳(メタデータ) (2023-01-04T18:28:07Z) - Rethinking Cost-sensitive Classification in Deep Learning via
Adversarial Data Augmentation [4.479834103607382]
コストに敏感な分類は、誤分類エラーがコストで大きく異なるアプリケーションにおいて重要である。
本稿では,過度パラメータ化モデルにコスト感受性を持たせるために,コスト依存型逆データ拡張フレームワークを提案する。
提案手法は,全体のコストを効果的に最小化し,臨界誤差を低減するとともに,全体的な精度で同等の性能を達成できる。
論文 参考訳(メタデータ) (2022-08-24T19:00:30Z) - Semi-supervised Object Detection via Virtual Category Learning [68.26956850996976]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
具体的には、各混乱したサンプルに仮想圏(VC)が割り当てられる。
トレーニングサンプルと仮想カテゴリの間の埋め込み距離を指定することに起因する。
論文 参考訳(メタデータ) (2022-07-07T16:59:53Z) - Active Surrogate Estimators: An Active Learning Approach to
Label-Efficient Model Evaluation [59.7305309038676]
モデル評価のためのアクティブサロゲート推定器(ASE)を提案する。
ASEは現在の最先端技術よりもラベル効率が高いことが分かりました。
論文 参考訳(メタデータ) (2022-02-14T17:15:18Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
異なるデータセットにまたがるトランスファー可能なドメイン不変知識を探索できる,新しい弱い教師付き病巣移動フレームワークを提案する。
wasserstein quantified transferability frameworkは、広い範囲の転送可能なコンテキスト依存性を強調するために開発されている。
新規な自己監督型擬似ラベル生成器は、送信困難かつ転送容易なターゲットサンプルの両方に対して、確実な擬似ピクセルラベルを等しく提供するように設計されている。
論文 参考訳(メタデータ) (2020-12-08T02:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。