論文の概要: PhenoProfiler: Advancing Phenotypic Learning for Image-based Drug Discovery
- arxiv url: http://arxiv.org/abs/2502.19568v1
- Date: Wed, 26 Feb 2025 21:20:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:49.373587
- Title: PhenoProfiler: Advancing Phenotypic Learning for Image-based Drug Discovery
- Title(参考訳): PhenoProfiler: 画像に基づく薬物発見のためのフェノタイプ学習の改善
- Authors: Bo Li, Bob Zhang, Chengyang Zhang, Minghao Zhou, Weiliang Huang, Shihang Wang, Qing Wang, Mengran Li, Yong Zhang, Qianqian Song,
- Abstract要約: PhenoProfilerは、全スライディングのマルチチャネル画像を低次元の定量的表現に直接処理するエンドツーエンドのツールである。
大規模な公開データセットに対して厳格に評価されている。
PhenoProfilerは、最先端のメソッドを最大20%上回っている。
- 参考スコア(独自算出の注目度): 22.153859584729133
- License:
- Abstract: In the field of image-based drug discovery, capturing the phenotypic response of cells to various drug treatments and perturbations is a crucial step. However, existing methods require computationally extensive and complex multi-step procedures, which can introduce inefficiencies, limit generalizability, and increase potential errors. To address these challenges, we present PhenoProfiler, an innovative model designed to efficiently and effectively extract morphological representations, enabling the elucidation of phenotypic changes induced by treatments. PhenoProfiler is designed as an end-to-end tool that processes whole-slide multi-channel images directly into low-dimensional quantitative representations, eliminating the extensive computational steps required by existing methods. It also includes a multi-objective learning module to enhance robustness, accuracy, and generalization in morphological representation learning. PhenoProfiler is rigorously evaluated on large-scale publicly available datasets, including over 230,000 whole-slide multi-channel images in end-to-end scenarios and more than 8.42 million single-cell images in non-end-to-end settings. Across these benchmarks, PhenoProfiler consistently outperforms state-of-the-art methods by up to 20%, demonstrating substantial improvements in both accuracy and robustness. Furthermore, PhenoProfiler uses a tailored phenotype correction strategy to emphasize relative phenotypic changes under treatments, facilitating the detection of biologically meaningful signals. UMAP visualizations of treatment profiles demonstrate PhenoProfiler ability to effectively cluster treatments with similar biological annotations, thereby enhancing interpretability. These findings establish PhenoProfiler as a scalable, generalizable, and robust tool for phenotypic learning.
- Abstract(参考訳): 画像に基づく薬物発見の分野では、様々な薬物治療や摂動に対する細胞の表現型応答を捉えることが重要なステップである。
しかし、既存の手法では、非効率性の導入、一般化可能性の制限、潜在的なエラーの増加など、計算的に広範囲で複雑な多段階の手順が必要である。
これらの課題に対処するために,PhenoProfilerを提案する。PhenoProfilerは,形態的表現を効率的かつ効果的に抽出し,治療によって引き起こされる表現型変化の解明を可能にする革新的なモデルである。
PhenoProfilerは、エンド・ツー・エンドのツールとして設計されており、既存の手法で必要とされる膨大な計算ステップをなくし、低次元の定量的表現に直接スライディングされたマルチチャネル画像を処理する。
また、モルフォロジー表現学習における堅牢性、正確性、一般化を高めるための多目的学習モジュールも備えている。
PhenoProfilerは大規模に公開されているデータセットに対して厳格に評価されている。その中には、エンドツーエンドシナリオで23万以上のマルチチャネルイメージ、非エンドツーエンド設定で8200万以上のシングルセルイメージが含まれている。
これらのベンチマーク全体で、PhenoProfilerは最先端のメソッドを最大20%上回り、精度と堅牢性の両方で大幅に改善されている。
さらに、PhenoProfilerは、治療中の相対的な表現型変化を強調するために、調整された表現型補正戦略を使用し、生物学的に有意なシグナルの検出を容易にする。
UMAPによる治療プロファイルの可視化は、PhenoProfilerが類似の生物学的アノテーションで効果的に治療をクラスタリングし、解釈可能性を高めることを示す。
これらの知見はPhenoProfilerを表現型学習のためのスケーラブルで汎用的で堅牢なツールとして確立している。
関連論文リスト
- Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models [0.815557531820863]
本稿では,事前学習した潜伏拡散モデルを用いて,微妙な表現型変化を明らかにする手法を提案する。
本研究は, 視覚的特徴と知覚的差異の両方を捉えることで, 表現型変化を効果的に検出できることを示す。
論文 参考訳(メタデータ) (2025-02-12T15:45:19Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
最近の研究は、高密度知覚タスクのためのT2I拡散モデルを簡単に調整することで有望な結果を示す。
拡散前処理における伝達効率と性能に影響を及ぼす重要な要因を徹底的に検討する。
我々の研究は、濃密な視覚認知タスクに特化した効果的な決定論的ワンステップ微調整パラダイムであるGenPerceptの開発において頂点に達した。
論文 参考訳(メタデータ) (2024-03-10T04:23:24Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Morphological Profiling for Drug Discovery in the Era of Deep Learning [13.307277432389496]
形態素プロファイリングの分野における最近の進歩を概観する。
このパイプラインでは、ディープラーニングの適用に特に重点を置いています。
論文 参考訳(メタデータ) (2023-12-13T05:08:32Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
我々は, 結合親和性, 溶解性, ADMET (吸収, 分布, 代謝, 排出, 毒性) を含む幅広い特性について検討する。
化学指紋やグラフベースニューラルネットワークなど,既存の一般的な記述子や埋め込みについて論じる。
最後に、モデル予測の理解を提供する技術、特に薬物発見における重要な意思決定について評価する。
論文 参考訳(メタデータ) (2023-08-02T22:18:41Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
本稿では,多数の画像の必要性を軽減するために,自己教師付き識別器を用いた改良型CycleGANアーキテクチャを提案する。
また, 生物学的データセットを用いて, 明らかな細胞表現型および非予防的な細胞表現型変異について検討した。
論文 参考訳(メタデータ) (2023-01-21T16:25:04Z) - Denoising Diffusion Probabilistic Models for Generation of Realistic
Fully-Annotated Microscopy Image Data Sets [1.07539359851877]
本研究では,拡散モデルにより,フルアノテートされた顕微鏡画像データセットを効果的に生成できることを実証する。
提案されたパイプラインは、ディープラーニングベースのセグメンテーションアプローチのトレーニングにおいて、手動アノテーションへの依存を減らすのに役立つ。
論文 参考訳(メタデータ) (2023-01-02T14:17:08Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。