Twofold Debiasing Enhances Fine-Grained Learning with Coarse Labels
- URL: http://arxiv.org/abs/2502.19816v1
- Date: Thu, 27 Feb 2025 06:41:49 GMT
- Title: Twofold Debiasing Enhances Fine-Grained Learning with Coarse Labels
- Authors: Xin-yang Zhao, Jian Jin, Yang-yang Li, Yazhou Yao,
- Abstract summary: coarse-grained supervised pre-training suppresses the extraction of critical fine-grained features for discrimination.<n>Models suffer from overfitting due to biased distributions caused by limited fine-grained samples.<n>We propose the Twofold Debiasing (TFB) method, which addresses these challenges through detailed feature enhancement and distribution calibration.
- Score: 22.58772008332314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Coarse-to-Fine Few-Shot (C2FS) task is designed to train models using only coarse labels, then leverages a limited number of subclass samples to achieve fine-grained recognition capabilities. This task presents two main challenges: coarse-grained supervised pre-training suppresses the extraction of critical fine-grained features for subcategory discrimination, and models suffer from overfitting due to biased distributions caused by limited fine-grained samples. In this paper, we propose the Twofold Debiasing (TFB) method, which addresses these challenges through detailed feature enhancement and distribution calibration. Specifically, we introduce a multi-layer feature fusion reconstruction module and an intermediate layer feature alignment module to combat the model's tendency to focus on simple predictive features directly related to coarse-grained supervision, while neglecting complex fine-grained level details. Furthermore, we mitigate the biased distributions learned by the fine-grained classifier using readily available coarse-grained sample embeddings enriched with fine-grained information. Extensive experiments conducted on five benchmark datasets demonstrate the efficacy of our approach, achieving state-of-the-art results that surpass competitive methods.
Related papers
- Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.
We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.
Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - Deep Clustering with Diffused Sampling and Hardness-aware
Self-distillation [4.550555443103878]
This paper proposes a novel end-to-end deep clustering method with diffused sampling and hardness-aware self-distillation (HaDis)
Results on five challenging image datasets demonstrate the superior clustering performance of our HaDis method over the state-of-the-art.
arXiv Detail & Related papers (2024-01-25T09:33:49Z) - Twice Class Bias Correction for Imbalanced Semi-Supervised Learning [59.90429949214134]
We introduce a novel approach called textbfTwice textbfClass textbfBias textbfCorrection (textbfTCBC)
We estimate the class bias of the model parameters during the training process.
We apply a secondary correction to the model's pseudo-labels for unlabeled samples.
arXiv Detail & Related papers (2023-12-27T15:06:36Z) - Learning with Noisy Labels Using Collaborative Sample Selection and
Contrastive Semi-Supervised Learning [76.00798972439004]
Collaborative Sample Selection (CSS) removes noisy samples from identified clean set.
We introduce a co-training mechanism with a contrastive loss in semi-supervised learning.
arXiv Detail & Related papers (2023-10-24T05:37:20Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples.
We propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local to local (L2L) similarity metric.
Experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state-of-the-art by a large margin.
arXiv Detail & Related papers (2022-10-04T07:54:40Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
Mixup scheme suggests mixing a pair of samples to create an augmented training sample.
We present a novel, yet simple Mixup-variant that captures the best of both worlds.
arXiv Detail & Related papers (2021-12-16T11:27:48Z) - Self-Supervised Learning by Estimating Twin Class Distributions [26.7828253129684]
We present TWIST, a novel self-supervised representation learning method by classifying large-scale unlabeled datasets in an end-to-end way.
We employ a siamese network terminated by a softmax operation to produce twin class distributions of two augmented images.
Specifically, we minimize the entropy of the distribution for each sample to make the class prediction for each sample and maximize the entropy of the mean distribution to make the predictions of different samples diverse.
arXiv Detail & Related papers (2021-10-14T14:39:39Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.