論文の概要: GraphSparseNet: a Novel Method for Large Scale Trafffic Flow Prediction
- arxiv url: http://arxiv.org/abs/2502.19823v1
- Date: Thu, 27 Feb 2025 06:51:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:58:38.748173
- Title: GraphSparseNet: a Novel Method for Large Scale Trafffic Flow Prediction
- Title(参考訳): GraphSparseNet:大規模トラフフィックフロー予測の新しい手法
- Authors: Weiyang Kong, Kaiqi Wu, Sen Zhang, Yubao Liu,
- Abstract要約: ディープラーニング、特にグラフNNによる最近の進歩は、複雑なダイナミクスによってこれらの予測の精度を大幅に向上させた。
しかし、GraphSparseNetはモデル複雑さが指数関数的に増大しているため、依然として課題である。
本稿では,GNNトラフィックベース予測モデルの精度とスケーラビリティを両立させる新しいフレームワークであるGraphSparseNetを紹介する。
- 参考スコア(独自算出の注目度): 4.857364765818477
- License:
- Abstract: Traffic flow forecasting is a critical spatio-temporal data mining task with wide-ranging applications in intelligent route planning and dynamic traffic management. Recent advancements in deep learning, particularly through Graph Neural Networks (GNNs), have significantly enhanced the accuracy of these forecasts by capturing complex spatio-temporal dynamics. However, the scalability of GNNs remains a challenge due to their exponential growth in model complexity with increasing nodes in the graph. Existing methods to address this issue, including sparsification, decomposition, and kernel-based approaches, either do not fully resolve the complexity issue or risk compromising predictive accuracy. This paper introduces GraphSparseNet (GSNet), a novel framework designed to improve both the scalability and accuracy of GNN-based traffic forecasting models. GraphSparseNet is comprised of two core modules: the Feature Extractor and the Relational Compressor. These modules operate with linear time and space complexity, thereby reducing the overall computational complexity of the model to a linear scale. Our extensive experiments on multiple real-world datasets demonstrate that GraphSparseNet not only significantly reduces training time by 3.51x compared to state-of-the-art linear models but also maintains high predictive performance.
- Abstract(参考訳): トラヒックフロー予測は、インテリジェントなルート計画と動的トラフィック管理において幅広い応用を行うための重要な時空間データマイニングタスクである。
近年のディープラーニング,特にグラフニューラルネットワーク(GNN)による進歩により,複雑な時空間ダイナミクスを捉えることで,これらの予測の精度が大幅に向上している。
しかし、GNNのスケーラビリティは、グラフ内のノードの増加に伴うモデル複雑性の指数関数的な増加のため、依然として課題である。
スパシフィケーション、分解、カーネルベースのアプローチなど、この問題に対処する既存の方法では、複雑さの問題を完全に解決しないか、予測精度を損なうリスクがある。
本稿では,GNNに基づくトラフィック予測モデルのスケーラビリティと精度の向上を目的とした新しいフレームワークであるGraphSparseNet(GSNet)を紹介する。
GraphSparseNetは2つのコアモジュール、Feature ExtractorとRelational Compressorで構成されている。
これらのモジュールは線形時間と空間の複雑さで動作し、それによってモデルの全体的な計算複雑性を線形スケールに低減する。
複数の実世界のデータセットに関する広範な実験により、GraphSparseNetは、最先端の線形モデルと比較してトレーニング時間を3.51倍削減するだけでなく、高い予測性能も維持することを示した。
関連論文リスト
- DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
グラフニューラルネットワーク(GNN)は、メッセージパッシングプロセスの近傍集約を通じてグラフ構造化データを処理するように設計されている。
メッセージパッシングにより、GNNは短距離空間的相互作用を理解できるだけでなく、過度なスムーシングや過度なスカッシングに悩まされる。
本稿では,線形計算オーバーヘッドを伴うオーバー・スムーシングとオーバー・スキャッシングに対処するための,emph情報フロー制御機構を提案する。
さまざまなサイズ、トポロジ、密度、ホモフィリック比のグラフを含む10の実世界のデータセットを対象に、我々のモデルをベンチマークし、優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-01-10T14:34:20Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
本研究では,グラフプルーニングと転送学習の枠組みに基づく新しい時空間畳み込みネットワーク(TL-GPSTGN)を提案する。
その結果、単一のデータセット上でのTL-GPSTGNの異常な予測精度と、異なるデータセット間の堅牢なマイグレーション性能が示された。
論文 参考訳(メタデータ) (2024-09-25T00:59:23Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
長距離交通予測は、交通ネットワークで観測される複雑な時間的相関のため、依然として困難な課題である。
本稿では,GRAM-ODE(Graph-based Multi-ODE Neural Networks)と呼ばれるアーキテクチャを提案する。
実世界の6つのデータセットを用いて行った大規模な実験は、最先端のベースラインと比較して、GRAM-ODEの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-30T02:10:42Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。