論文の概要: MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue
- arxiv url: http://arxiv.org/abs/2502.19860v1
- Date: Thu, 27 Feb 2025 08:04:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:15.371117
- Title: MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue
- Title(参考訳): MIND:マルチエージェント内対話による没入型心理学的癒しを目指して
- Authors: Yujia Chen, Changsong Li, Yiming Wang, Qingqing Xiao, Nan Zhang, Zifan Kong, Peng Wang, Binyu Yan,
- Abstract要約: 大きな言語モデル(LLM)は、より人間的な相互作用を生み出す可能性があるが、微妙な感情を捉えるのに苦労する。
MIND(Multi-agent INner Dialogue)は、より没入的な心理的癒し環境を提供する新しいパラダイムである。
MINDは従来のパラダイムよりもユーザフレンドリーな体験を提供する。
- 参考スコア(独自算出の注目度): 10.680619215137641
- License:
- Abstract: Mental health issues are worsening in today's competitive society, such as depression and anxiety. Traditional healings like counseling and chatbots fail to engage effectively, they often provide generic responses lacking emotional depth. Although large language models (LLMs) have the potential to create more human-like interactions, they still struggle to capture subtle emotions. This requires LLMs to be equipped with human-like adaptability and warmth. To fill this gap, we propose the MIND (Multi-agent INner Dialogue), a novel paradigm that provides more immersive psychological healing environments. Considering the strong generative and role-playing ability of LLM agents, we predefine an interactive healing framework and assign LLM agents different roles within the framework to engage in interactive inner dialogues with users, thereby providing an immersive healing experience. We conduct extensive human experiments in various real-world healing dimensions, and find that MIND provides a more user-friendly experience than traditional paradigms. This demonstrates that MIND effectively leverages the significant potential of LLMs in psychological healing.
- Abstract(参考訳): 精神的な健康問題は、うつ病や不安といった今日の競争社会で悪化している。
カウンセリングやチャットボットのような伝統的な治癒は効果的に機能しないため、感情的な深さに欠ける一般的な反応を提供することが多い。
大きな言語モデル(LLM)は、より人間的な相互作用を生み出す可能性があるが、それでも微妙な感情を捉えるのに苦労している。
このため、LLMは人間のような適応性と温かさを備える必要がある。
このギャップを埋めるために,より没入的な心理的癒し環境を提供する新しいパラダイムであるMIND(Multi-agent INner Dialogue)を提案する。
LLMエージェントの強力な生成能力とロールプレイング能力を考慮すると、対話的ヒーリング・フレームワークを事前に定義し、LLMエージェントをフレームワーク内の異なる役割に割り当て、ユーザとの対話的なインナー・ダイアログを行い、没入型ヒーリング体験を提供する。
MINDは従来のパラダイムよりもユーザフレンドリーな体験を提供する。
このことは、MINDが心理学的治癒においてLLMの有意義なポテンシャルを効果的に活用していることを示している。
関連論文リスト
- From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations [19.67703146838264]
大規模言語モデル(LLM)は感情的サポートの会話の世代に革命をもたらした。
本稿では,感情的支援会話の創出におけるペルソナの役割について考察する。
論文 参考訳(メタデータ) (2025-02-17T05:24:30Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
大規模言語モデル(LLM)は、流動的で一貫性があり多様な応答を生成する。
しかし、それらは重要な能力、コミュニケーションスキルを欠いている。
本稿は,内的モノローグによるLLMのコミュニケーション能力向上を目的としている。
実験の結果,提案したCSIM戦略はバックボーンモデルを改善し,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T16:19:42Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - SoulChat: Improving LLMs' Empathy, Listening, and Comfort Abilities
through Fine-tuning with Multi-turn Empathy Conversations [19.11368665202549]
心理学的なカウンセリングの分野で大きな言語モデルを適用する場合、彼らはしばしば普遍的なアドバイスを提供する。
我々は200万以上のサンプルからなるマルチターン共感的会話データセットを構築した。
複数回対話履歴を用いて微調整すると,LLMの共感能力が著しく向上することを示した。
論文 参考訳(メタデータ) (2023-11-01T03:49:52Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
大規模言語モデル(LLM)の多様な心理学的側面を評価するためのフレームワーク「サイコベンチ」を提案する。
サイコベンチはこれらの尺度を、性格特性、対人関係、モチベーションテスト、感情能力の4つのカテゴリーに分類する。
我々は、安全アライメントプロトコルをバイパスし、LLMの本質的な性質をテストするためにジェイルブレイクアプローチを採用している。
論文 参考訳(メタデータ) (2023-10-02T17:46:09Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。