論文の概要: Graph Probability Aggregation Clustering
- arxiv url: http://arxiv.org/abs/2502.19897v1
- Date: Thu, 27 Feb 2025 09:11:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:58:29.655215
- Title: Graph Probability Aggregation Clustering
- Title(参考訳): Graph Probability Aggregation Clustering
- Authors: Yuxuan Yan, Na Lu, Difei Mei, Ruofan Yan, Youtian Du,
- Abstract要約: 本稿では,グローバルクラスタリング対象関数と局所クラスタリング制約を統一するグラフベースのファジィクラスタリングアルゴリズムを提案する。
GPACフレームワーク全体は多制約最適化問題として定式化され、ラグランジアン法を用いて解くことができる。
合成,実世界,ディープラーニングのデータセットを用いて行った実験は,GPACがクラスタリング性能において既存の最先端手法を超えるだけでなく,計算効率も優れていることを示した。
- 参考スコア(独自算出の注目度): 5.377020739388736
- License:
- Abstract: Traditional clustering methods typically focus on either cluster-wise global clustering or point-wise local clustering to reveal the intrinsic structures in unlabeled data. Global clustering optimizes an objective function to explore the relationships between clusters, but this approach may inevitably lead to coarse partition. In contrast, local clustering heuristically groups data based on detailed point relationships, but it tends to be less coherence and efficient. To bridge the gap between these two concepts and utilize the strengths of both, we propose Graph Probability Aggregation Clustering (GPAC), a graph-based fuzzy clustering algorithm. GPAC unifies the global clustering objective function with a local clustering constraint. The entire GPAC framework is formulated as a multi-constrained optimization problem, which can be solved using the Lagrangian method. Through the optimization process, the probability of a sample belonging to a specific cluster is iteratively calculated by aggregating information from neighboring samples within the graph. We incorporate a hard assignment variable into the objective function to further improve the convergence and stability of optimization. Furthermore, to efficiently handle large-scale datasets, we introduce an acceleration program that reduces the computational complexity from quadratic to linear, ensuring scalability. Extensive experiments conducted on synthetic, real-world, and deep learning datasets demonstrate that GPAC not only exceeds existing state-of-the-art methods in clustering performance but also excels in computational efficiency, making it a powerful tool for complex clustering challenges.
- Abstract(参考訳): 従来のクラスタリング手法は、通常、クラスタ単位のグローバルクラスタリングまたはポイント単位のローカルクラスタリングに重点を置いて、ラベルなしデータの固有の構造を明らかにする。
グローバルクラスタリングは、クラスタ間の関係を探索する目的関数を最適化するが、このアプローチは必然的に粗いパーティションにつながる可能性がある。
対照的に、局所クラスタリングは詳細な点関係に基づいてデータをヒューリスティックにグループ化するが、一貫性と効率性が低い傾向にある。
これら2つの概念のギャップを埋め,両者の長所を利用するために,グラフベースのファジィクラスタリングアルゴリズムであるグラフ確率集約クラスタリング(GPAC)を提案する。
GPACはグローバルクラスタリング目的関数を局所クラスタリング制約と統合する。
GPACフレームワーク全体は多制約最適化問題として定式化され、ラグランジアン法を用いて解くことができる。
最適化プロセスを通じて、グラフ内の隣接するサンプルからの情報を集約することにより、特定のクラスタに属するサンプルの確率を反復的に算出する。
目的関数にハード割当変数を組み込んで最適化の収束と安定性をさらに改善する。
さらに,大規模データセットを効率的に処理するために,2次から線形への計算複雑性を低減し,スケーラビリティを確保する加速プログラムを導入する。
合成、実世界、ディープラーニングのデータセットで実施された大規模な実験により、GPACはクラスタリング性能における既存の最先端の手法を超えるだけでなく、計算効率も優れていることが示され、複雑なクラスタリング課題のための強力なツールとなっている。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、人間のクエリを著しく少なくして、望ましい結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T13:37:03Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Fast and Interpretable Consensus Clustering via Minipatch Learning [0.0]
IMPACC: Interpretable MiniPatch Adaptive Consensus Clustering を開発した。
我々は、信頼性と計算コストの両面で改善された観測のための適応型サンプリング手法を開発した。
その結果,より正確で解釈可能なクラスタソリューションが得られた。
論文 参考訳(メタデータ) (2021-10-05T22:39:28Z) - Swarm Intelligence for Self-Organized Clustering [6.85316573653194]
Databionic Swarm(DBS)と呼ばれるSwarmシステムが導入された。
スウォームインテリジェンス、自己組織化、出現の相互関係を利用して、DBSはクラスタリングのタスクにおけるグローバルな目的関数の最適化に対する代替アプローチとして機能する。
論文 参考訳(メタデータ) (2021-06-10T06:21:48Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。