CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving
- URL: http://arxiv.org/abs/2502.19908v3
- Date: Mon, 24 Mar 2025 14:03:59 GMT
- Title: CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving
- Authors: Dongkun Zhang, Jiaming Liang, Ke Guo, Sha Lu, Qi Wang, Rong Xiong, Zhenwei Miao, Yue Wang,
- Abstract summary: Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments.<n>In this paper, we introduce textbfCarPlanner, a textbfConsistent textbfauto-textbfregressive textbfPlanner that uses reinforcement learning to generate multi-modal trajectories.
- Score: 23.7034061448326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
Related papers
- TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Diffusion-Based Planning for Autonomous Driving with Flexible Guidance [19.204115959760788]
We propose a novel transformer-based Diffusion Planner for closed-loop planning.<n>Our model supports joint modeling of both prediction and planning tasks.<n>It achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.
arXiv Detail & Related papers (2025-01-26T15:49:50Z) - Reinforced Imitative Trajectory Planning for Urban Automated Driving [3.2436298824947434]
This paper proposes a novel RL-based trajectory planning method that integrates RL with imitation learning to enable multi-step planning.
A transformer-based Bayesian reward function is developed, providing effective reward signals for RL in urban scenarios.
The proposed methods were validated on the large-scale real-world urban automated driving nuPlan dataset.
arXiv Detail & Related papers (2024-10-21T03:04:29Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - Let Hybrid A* Path Planner Obey Traffic Rules: A Deep Reinforcement Learning-Based Planning Framework [0.0]
In this work, we combine low-level algorithms such as the hybrid A* path planning with deep reinforcement learning (DRL) to make high-level decisions.
The hybrid A* planner is able to generate a collision-free trajectory to be executed by a model predictive controller (MPC)
In addition, the DRL algorithm is able to keep the lane change command consistent within a chosen time-period.
arXiv Detail & Related papers (2024-07-01T12:00:10Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion [66.69666636971922]
We present APRL, a policy regularization framework that modulates the robot's exploration over the course of training.
APRL enables a quadrupedal robot to efficiently learn to walk entirely in the real world within minutes.
arXiv Detail & Related papers (2023-10-26T17:51:46Z) - Action and Trajectory Planning for Urban Autonomous Driving with
Hierarchical Reinforcement Learning [1.3397650653650457]
We propose an action and trajectory planner using Hierarchical Reinforcement Learning (atHRL) method.
We empirically verify the efficacy of atHRL through extensive experiments in complex urban driving scenarios.
arXiv Detail & Related papers (2023-06-28T07:11:02Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
We propose a method to employ a trained deep reinforcement learning policy for dedicated high-level behavior planning.
To the best of our knowledge, this work is the first to apply deep reinforcement learning in this manner.
arXiv Detail & Related papers (2023-04-17T13:49:55Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.