Low crosstalk modular flip-chip architecture for coupled superconducting qubits
- URL: http://arxiv.org/abs/2502.19927v2
- Date: Fri, 25 Apr 2025 11:32:02 GMT
- Title: Low crosstalk modular flip-chip architecture for coupled superconducting qubits
- Authors: Soeren Ihssen, Simon Geisert, Gabriel Jauma, Patrick Winkel, Martin Spiecker, Nicolas Zapata, Nicolas Gosling, Patrick Paluch, Manuel Pino, Thomas Reisinger, Wolfgang Wernsdorfer, Juan Jose Garcia-Ripoll, Ioan M. Pop,
- Abstract summary: We present a flip-chip architecture for an array of superconducting qubits, in which circuit components reside inside individual microwave enclosures.<n>In contrast to other flip-chip approaches, the qubit chips in our architecture are electrically floating, which guarantees a simple, fully modular assembly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a flip-chip architecture for an array of coupled superconducting qubits, in which circuit components reside inside individual microwave enclosures. In contrast to other flip-chip approaches, the qubit chips in our architecture are electrically floating, which guarantees a simple, fully modular assembly of capacitively coupled circuit components such as qubit, control, and coupling structures, as well as reduced crosstalk between the components. We validate the concept with a chain of three nearest neighbor coupled generalized flux qubits in which the center qubit acts as a frequency-tunable coupler. Using this coupler, we demonstrate a transverse coupling on/off ratio $\approx$ 50, zz-crosstalk $\approx$ 0.7 kHz between resonant qubits and isolation between the qubit enclosures > 60 dB.
Related papers
- Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Modular Superconducting Qubit Architecture with a Multi-chip Tunable
Coupler [0.0]
We use a floating tunable coupler to mediate interactions between qubits on separate chips.
We show that the zero-coupling condition between qubits on separate chips can be achieved in each design.
We demonstrate two-qubit gate operations with fidelity at the same level as qubits with a tunable coupler on a single chip.
arXiv Detail & Related papers (2023-08-18T02:00:33Z) - Improved Parameter Targeting in {3D}-Integrated Superconducting Circuits
through a Polymer Spacer Process [0.0]
We describe a method to control the inter-chip separation by using polymer spacers.
Compared to an identical process without spacers, we reduce the measured planarity error by a factor of 3.5.
We observe chip-to-chip resonator frequency variations below 50 MHz.
arXiv Detail & Related papers (2023-06-30T18:00:01Z) - Coupler microwave-activated controlled phase gate on fluxonium qubits [32.73124984242397]
A tunable coupler typically includes a nonlinear element, such as a SQUID, which is used to tune the resonance frequency of an LC circuit connecting two qubits.
Here we propose a complimentary approach where instead of tuning the resonance frequency of the tunable coupler by applying a quasistatic control signal, we excite by microwave the degree of freedom associated with the coupler itself.
arXiv Detail & Related papers (2023-02-20T07:51:04Z) - Long-distance transmon coupler with CZ gate fidelity above $99.8\%$ [37.50928453361462]
We demonstrate a tunable qubit-qubit coupler based on a floating transmon device.
We place qubits at least 2 mm apart from each other while maintaining over 50 MHz coupling between the coupler and the qubits.
arXiv Detail & Related papers (2022-08-19T17:37:56Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - High Coherence in a Tileable 3D Integrated Superconducting Circuit
Architecture [0.0]
We report high qubit coherence as well as low crosstalk and single-qubit gate errors in a superconducting circuit architecture that promises to be tileable to 2D lattices of qubits.
The architecture integrates an inductivelyed cavity enclosure into a design featuring non-galvanic out-of-plane control wiring and qubits and resonators fabricated on opposing sides of a substrate.
arXiv Detail & Related papers (2021-07-23T11:08:07Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.