High Coherence in a Tileable 3D Integrated Superconducting Circuit
Architecture
- URL: http://arxiv.org/abs/2107.11140v1
- Date: Fri, 23 Jul 2021 11:08:07 GMT
- Title: High Coherence in a Tileable 3D Integrated Superconducting Circuit
Architecture
- Authors: Peter A. Spring, Shuxiang Cao, Takahiro Tsunoda, Giulio Campanaro,
Simone D. Fasciati, James Wills, Vivek Chidambaram, Boris Shteynas, Mustafa
Bakr, Paul Gow, Lewis Carpenter, James Gates, Brian Vlastakis, Peter J. Leek
- Abstract summary: We report high qubit coherence as well as low crosstalk and single-qubit gate errors in a superconducting circuit architecture that promises to be tileable to 2D lattices of qubits.
The architecture integrates an inductivelyed cavity enclosure into a design featuring non-galvanic out-of-plane control wiring and qubits and resonators fabricated on opposing sides of a substrate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report high qubit coherence as well as low crosstalk and single-qubit gate
errors in a superconducting circuit architecture that promises to be tileable
to 2D lattices of qubits. The architecture integrates an inductively shunted
cavity enclosure into a design featuring non-galvanic out-of-plane control
wiring and qubits and resonators fabricated on opposing sides of a substrate.
The proof-of-principle device features four uncoupled transmon qubits and
exhibits average energy relaxation times $T_1=149(38)~\mu$s, pure echoed
dephasing times $T_{\phi,e}=189(34)~\mu$s, and single-qubit gate fidelities
$F=99.982(4)\%$ as measured by simultaneous randomized benchmarking. The 3D
integrated nature of the control wiring means that qubits will remain
addressable as the architecture is tiled to form larger qubit lattices. Band
structure simulations are used to predict that the tiled enclosure will still
provide a clean electromagnetic environment to enclosed qubits at arbitrary
scale.
Related papers
- Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Low crosstalk modular flip-chip architecture for coupled superconducting qubits [0.0]
We present a flip-chip architecture for an array of superconducting qubits, in which circuit components reside inside individual microwave enclosures.
In contrast to other flip-chip approaches, the qubit chips in our architecture are electrically floating, which guarantees a simple, fully modular assembly.
arXiv Detail & Related papers (2025-02-27T09:54:27Z) - A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling [29.539407433267254]
We present a 2D array of silicon metal-oxide-semiconductor (MOS) quantum dots with tunable interdot coupling between all adjacent dots.
The device is characterized at 4.2 K, where we demonstrate the formation and isolation of double-dot and triple-dot configurations.
arXiv Detail & Related papers (2024-11-21T06:46:15Z) - Robust shaped pulses for arrays of superconducting or semiconductor spin
qubits with fixed Ising coupling [0.0]
A major current challenge in solid-state quantum computing is to scale qubit arrays to a larger number of qubits.
One approach to simplifying the problem is to use a qubit array with fixed Ising ($ZZ$) interactions.
We construct this set of robust gates for two-edge, three-edge, and four-edge vertices, which compose all existing superconducting qubit and semiconductor spin qubit arrays.
arXiv Detail & Related papers (2023-10-24T20:05:47Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Long-distance transmon coupler with CZ gate fidelity above $99.8\%$ [37.50928453361462]
We demonstrate a tunable qubit-qubit coupler based on a floating transmon device.
We place qubits at least 2 mm apart from each other while maintaining over 50 MHz coupling between the coupler and the qubits.
arXiv Detail & Related papers (2022-08-19T17:37:56Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Demonstration of an All-Microwave Controlled-Phase Gate between Far
Detuned Qubits [0.0]
We present an all-microwave controlled-phase gate between two transversely coupled transmon qubits.
Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors.
arXiv Detail & Related papers (2020-06-18T16:08:19Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.