Impilict Runge-Kutta based sparse identification of governing equations in biologically motivated systems
- URL: http://arxiv.org/abs/2502.20319v1
- Date: Thu, 27 Feb 2025 17:44:37 GMT
- Title: Impilict Runge-Kutta based sparse identification of governing equations in biologically motivated systems
- Authors: Mehrdad Anvari, Hamidreza Marasi, Hossein Kheiri,
- Abstract summary: This study presents a novel data-driven framework by integrating high order implicit Runge-Kutta methods (IRKs) with the sparse identification, termed IRK-SINDy.<n>Results indicate that IRK-SINDy outperforms conventional SINDy and the RK4-SINDy framework, particularly under conditions of extreme data scarcity and noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying governing equations in physical and biological systems from datasets remains a long-standing challenge across various scientific disciplines, providing mechanistic insights into complex system evolution. Common methods like sparse identification of nonlinear dynamics (SINDy) often rely on precise derivative estimations, making them vulnerable to data scarcity and noise. This study presents a novel data-driven framework by integrating high order implicit Runge-Kutta methods (IRKs) with the sparse identification, termed IRK-SINDy. The framework exhibits remarkable robustness to data scarcity and noise by leveraging the lower stepsize constraint of IRKs. Two methods for incorporating IRKs into sparse regression are introduced: one employs iterative schemes for numerically solving nonlinear algebraic system of equations, while the other utilizes deep neural networks to predict stage values of IRKs. The performance of IRK-SINDy is demonstrated through numerical experiments on benchmark problems with varied dynamical behaviors, including linear and nonlinear oscillators, the Lorenz system, and biologically relevant models like predator-prey dynamics, logistic growth, and the FitzHugh-Nagumo model. Results indicate that IRK-SINDy outperforms conventional SINDy and the RK4-SINDy framework, particularly under conditions of extreme data scarcity and noise, yielding interpretable and generalizable models.
Related papers
- SODAs: Sparse Optimization for the Discovery of Differential and Algebraic Equations [0.0]
We introduce Sparse Optimization for Differential-Algebraic Systems (SODAs)
SODAs is a data-driven method for the identification of DAEs in their explicit form.
We demonstrate its robustness to noise in both simulated time series and real-time experimental data.
arXiv Detail & Related papers (2025-03-08T00:29:00Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)<n>SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.<n>Our experiments validate the improved accuracy and simplicity of discovered network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs automatically.
We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes.
Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases.
arXiv Detail & Related papers (2024-04-25T09:23:03Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.
We establish the identifiability of the regimes and DAGs within our framework.
Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.