論文の概要: Towards Responsible AI in Education: Hybrid Recommendation System for K-12 Students Case Study
- arxiv url: http://arxiv.org/abs/2502.20354v1
- Date: Thu, 27 Feb 2025 18:27:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:10.252661
- Title: Towards Responsible AI in Education: Hybrid Recommendation System for K-12 Students Case Study
- Title(参考訳): 教育における責任あるAIを目指して:K-12学生を対象としたハイブリッド・レコメンデーション・システム
- Authors: Nazarii Drushchak, Vladyslava Tyshchenko, Nataliya Polyakovska,
- Abstract要約: 本研究は,グラフベースモデリングと行列因数分解を組み合わせたK-12学生のための推薦システムを提案する。
公平性の懸念に対処するために、システムは保護された学生グループ間のフィードバックを分析し、バイアスを検出し、軽減するフレームワークを含む。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The growth of Educational Technology (EdTech) has enabled highly personalized learning experiences through Artificial Intelligence (AI)-based recommendation systems tailored to each student needs. However, these systems can unintentionally introduce biases, potentially limiting fair access to learning resources. This study presents a recommendation system for K-12 students, combining graph-based modeling and matrix factorization to provide personalized suggestions for extracurricular activities, learning resources, and volunteering opportunities. To address fairness concerns, the system includes a framework to detect and reduce biases by analyzing feedback across protected student groups. This work highlights the need for continuous monitoring in educational recommendation systems to support equitable, transparent, and effective learning opportunities for all students.
- Abstract(参考訳): 教育技術(EdTech)の成長は、各学生のニーズに合わせてAIベースのレコメンデーションシステムを通じて、高度にパーソナライズされた学習体験を可能にした。
しかし、これらのシステムは意図せずバイアスを導入し、学習リソースへの公平なアクセスを制限する可能性がある。
本研究は,K-12学生を対象とした推薦システムであり,グラフに基づくモデリングと行列因数分解を組み合わせることで,外乱活動,学習資源,ボランティアの機会に対するパーソナライズされた提案を行う。
公平性の懸念に対処するために、システムは保護された学生グループ間のフィードバックを分析し、バイアスを検出し、軽減するフレームワークを含む。
この研究は、全ての学生が平等で透明で効果的な学習機会をサポートするために、教育推薦システムにおける継続的なモニタリングの必要性を強調している。
関連論文リスト
- DMP_AI: An AI-Aided K-12 System for Teaching and Learning in Diverse Schools [7.618511269608216]
K-12教育における人工知能(AI)の利用は、まだ初期段階にある。
本システムの開発は,ユーザのプライバシを優先しながら慎重に行われている。
このシステムは、効果的かつ包括的なK-12教育を提供するための教育者を支援するための貴重なリソースとして機能する。
論文 参考訳(メタデータ) (2024-12-04T13:10:14Z) - Personalised Feedback Framework for Online Education Programmes Using Generative AI [0.0]
本稿では,埋め込みを組み込むことでChatGPTの機能を拡張したフィードバックフレームワークを提案する。
本研究の一環として,オープンエンドおよび複数選択質問に対する有効率90%と100%を達成できる概念解の証明を提案し,開発した。
論文 参考訳(メタデータ) (2024-10-14T22:35:40Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - Ontology-driven Reinforcement Learning for Personalized Student Support [1.8972913066829966]
本稿では,バーチャル教育システムに適用可能な,パーソナライズされた学生支援のための汎用フレームワークを提案する。
データ収集とマルチエージェント強化学習を組み合わせたセマンティックな組織に応用する。
その結果、学生にパーソナライズされた支援を提供するために、どんなバーチャル教育ソフトウェアにも適応できるモジュールシステムとなった。
論文 参考訳(メタデータ) (2024-07-14T21:11:44Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - Combining Gamification and Intelligent Tutoring Systems in a Serious
Game for Engineering Education [2.792030485253753]
本稿では,本ゲームに統合されたパーソナライズされた学習システムの開発から,現在進行中の結果について述べる。
コンピュータインテリジェンスを用いて,ゲーム内行動から収集したデータに基づいて,Webカメラ画像から感情状態を推定することにより,学生に適応的に支援を行う。
本研究では,個人化された学習システムを用いてプレイした学生の事前試験結果を通じて,システムの有効性を実証する。
論文 参考訳(メタデータ) (2023-05-26T01:24:19Z) - Towards a General Pre-training Framework for Adaptive Learning in MOOCs [37.570119583573955]
異種学習要素を適切に活用した,データ観測と学習スタイル分析に基づく統合フレームワークを提案する。
授業の構造やテキスト,知識は,学生の非逐次学習行動に本質的に整合性があり,モデリングに有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-18T13:18:39Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。