LIFT-GS: Cross-Scene Render-Supervised Distillation for 3D Language Grounding
- URL: http://arxiv.org/abs/2502.20389v1
- Date: Thu, 27 Feb 2025 18:59:11 GMT
- Title: LIFT-GS: Cross-Scene Render-Supervised Distillation for 3D Language Grounding
- Authors: Ang Cao, Sergio Arnaud, Oleksandr Maksymets, Jianing Yang, Ayush Jain, Sriram Yenamandra, Ada Martin, Vincent-Pierre Berges, Paul McVay, Ruslan Partsey, Aravind Rajeswaran, Franziska Meier, Justin Johnson, Jeong Joon Park, Alexander Sax,
- Abstract summary: We train a feedforward model that makes predictions in 3D, but never requires 3D labels and is supervised only in 2D.<n>For training, only need images and camera pose, and 2D labels.<n>We show that we can even remove the need for 2D labels by using pseudo-labels from pretrained 2D models.
- Score: 64.28181017898369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our approach to training 3D vision-language understanding models is to train a feedforward model that makes predictions in 3D, but never requires 3D labels and is supervised only in 2D, using 2D losses and differentiable rendering. The approach is new for vision-language understanding. By treating the reconstruction as a ``latent variable'', we can render the outputs without placing unnecessary constraints on the network architecture (e.g. can be used with decoder-only models). For training, only need images and camera pose, and 2D labels. We show that we can even remove the need for 2D labels by using pseudo-labels from pretrained 2D models. We demonstrate this to pretrain a network, and we finetune it for 3D vision-language understanding tasks. We show this approach outperforms baselines/sota for 3D vision-language grounding, and also outperforms other 3D pretraining techniques. Project page: https://liftgs.github.io.
Related papers
- Unifying 2D and 3D Vision-Language Understanding [85.84054120018625]
We introduce UniVLG, a unified architecture for 2D and 3D vision-language learning.
UniVLG bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems.
arXiv Detail & Related papers (2025-03-13T17:56:22Z) - SplatTalk: 3D VQA with Gaussian Splatting [13.211810095081159]
Language-guided 3D scene understanding is important for advancing applications in robotics, AR/VR, and human-computer interaction.
We introduce SplatTalk, a novel method that uses a generalizable 3D Gaussian Splatting (3DGS) framework to produce 3D tokens suitable for direct input into a pretrained LLM.
arXiv Detail & Related papers (2025-03-08T16:31:48Z) - ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - Cross-Modal Self-Training: Aligning Images and Pointclouds to Learn Classification without Labels [69.55622471172941]
Large-scale vision 2D vision language models, such as CLIP can be aligned with a 3D encoder to learn generalizable (open-vocabulary) 3D vision models.
We propose an optimization framework: Cross-MoST: Cross-Modal Self-Training, to improve the label-free classification performance of a zero-shot 3D vision model.
arXiv Detail & Related papers (2024-04-15T21:30:50Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
We propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels.
Specifically, we design a feature-level constraint to align LiDAR and image features based on object-aware regions.
Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations.
Third, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data.
arXiv Detail & Related papers (2023-12-12T18:57:25Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
We present Uni3D, a 3D foundation model to explore the unified 3D representation at scale.
Uni3D uses a 2D ViT end-to-end pretrained to align the 3D point cloud features with the image-text aligned features.
We show that the strong Uni3D representation also enables applications such as 3D painting and retrieval in the wild.
arXiv Detail & Related papers (2023-10-10T16:49:21Z) - Cycle-Consistent Generative Rendering for 2D-3D Modality Translation [21.962725416347855]
We learn a module that generates a realistic rendering of a 3D object and infers a realistic 3D shape from an image.
By leveraging generative domain translation methods, we are able to define a learning algorithm that requires only weak supervision, with unpaired data.
The resulting model is able to perform 3D shape, pose, and texture inference from 2D images, but can also generate novel textured 3D shapes and renders.
arXiv Detail & Related papers (2020-11-16T15:23:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.