Adversarial Robustness of Partitioned Quantum Classifiers
- URL: http://arxiv.org/abs/2502.20403v1
- Date: Tue, 28 Jan 2025 07:10:40 GMT
- Title: Adversarial Robustness of Partitioned Quantum Classifiers
- Authors: Pouya Kananian, Hans-Arno Jacobsen,
- Abstract summary: In the NISQ era of quantum computing, circuit cutting is a notable technique for simulating circuits that exceed the qubit limitations of current devices.<n>We examine how partitioning quantum classifiers through circuit cutting increase their susceptibility to adversarial attacks.
- Score: 10.679753825744964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial robustness in quantum classifiers is a critical area of study, providing insights into their performance compared to classical models and uncovering potential advantages inherent to quantum machine learning. In the NISQ era of quantum computing, circuit cutting is a notable technique for simulating circuits that exceed the qubit limitations of current devices, enabling the distribution of a quantum circuit's execution across multiple quantum processing units through classical communication. We examine how partitioning quantum classifiers through circuit cutting increase their susceptibility to adversarial attacks, establishing a link between attacking the state preparation channels in wire cutting and implementing adversarial gates within intermediate layers of a quantum classifier. We then proceed to study the latter problem from both a theoretical and experimental perspective.
Related papers
- Simulating quantum circuits with restricted quantum computers [0.0]
This thesis is dedicated to the simulation of nonlocal quantum computation using local quantum operations.
We characterize the optimal simulation overhead for a broad range of practically relevant nonlocal states and channels.
We also investigate the utility of classical communication between the local parties.
arXiv Detail & Related papers (2025-03-27T17:59:45Z) - Realizing Quantum Adversarial Defense on a Trapped-ion Quantum Processor [3.1858340237924776]
We implement a data re-uploading-based quantum classifier on an ion-trap quantum processor.<n>We demonstrate its superior robustness on the MNIST dataset.
arXiv Detail & Related papers (2025-03-04T09:22:59Z) - Circuit Folding: Modular and Qubit-Level Workload Management in Quantum-Classical Systems [5.6744988702710835]
Circuit knitting is a technique that offloads some of the computational burden from quantum circuits.<n>We propose CiFold, a novel graph-based system that identifies and leverages repeated structures within quantum circuits.<n>Our system has been extensively evaluated across various quantum algorithms, achieving up to 799.2% reduction in quantum resource usage.
arXiv Detail & Related papers (2024-12-24T23:34:17Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
We propose a novel quantum reinforcement learning approach that combines the Advantage Actor-Critic algorithm with variational quantum circuits.
We empirically test multiple quantum Advantage Actor-Critic configurations with the well known Cart Pole environment to evaluate our approach in control tasks with continuous state spaces.
arXiv Detail & Related papers (2024-01-13T11:08:45Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Recent advances for quantum classifiers [2.459525036555352]
We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Handling Non-Unitaries in Quantum Circuit Equivalence Checking [4.265279817927261]
Quantum computers are reaching a level where interactions between classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits: dynamic quantum circuits.
They offer a broader range of available computing primitives that lead to new challenges for design tasks such as simulation, compilation, and verification.
arXiv Detail & Related papers (2021-06-02T12:04:56Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.