Map Space Belief Prediction for Manipulation-Enhanced Mapping
- URL: http://arxiv.org/abs/2502.20606v1
- Date: Fri, 28 Feb 2025 00:10:52 GMT
- Title: Map Space Belief Prediction for Manipulation-Enhanced Mapping
- Authors: Joao Marcos Correia Marques, Nils Dengler, Tobias Zaenker, Jesper Mucke, Shenlong Wang, Maren Bennewitz, Kris Hauser,
- Abstract summary: In this work, we address the problem of manipulation-enhanced semantic mapping.<n>A robot has to efficiently identify all objects in a cluttered shelf.<n>Our novel POMDP planner improves map completeness and accuracy over existing methods.
- Score: 35.04168032835369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Searching for objects in cluttered environments requires selecting efficient viewpoints and manipulation actions to remove occlusions and reduce uncertainty in object locations, shapes, and categories. In this work, we address the problem of manipulation-enhanced semantic mapping, where a robot has to efficiently identify all objects in a cluttered shelf. Although Partially Observable Markov Decision Processes~(POMDPs) are standard for decision-making under uncertainty, representing unstructured interactive worlds remains challenging in this formalism. To tackle this, we define a POMDP whose belief is summarized by a metric-semantic grid map and propose a novel framework that uses neural networks to perform map-space belief updates to reason efficiently and simultaneously about object geometries, locations, categories, occlusions, and manipulation physics. Further, to enable accurate information gain analysis, the learned belief updates should maintain calibrated estimates of uncertainty. Therefore, we propose Calibrated Neural-Accelerated Belief Updates (CNABUs) to learn a belief propagation model that generalizes to novel scenarios and provides confidence-calibrated predictions for unknown areas. Our experiments show that our novel POMDP planner improves map completeness and accuracy over existing methods in challenging simulations and successfully transfers to real-world cluttered shelves in zero-shot fashion.
Related papers
- EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images [8.222817204505699]
Existing mapping methods often suffer from overconfident semantic predictions, and sparse and noisy depth sensing.
We introduce EvidMTL, a multi-task learning framework that uses evidential heads for depth estimation and semantic segmentation.
We present EvidKimera, an uncertainty-aware semantic surface mapping framework, which uses evidential depth and semantics prediction for improved 3D metric-semantic consistency.
arXiv Detail & Related papers (2025-03-06T13:56:48Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments [13.163784646113214]
Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains.
We present AMROD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain.
Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels.
arXiv Detail & Related papers (2024-06-24T08:30:03Z) - Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction [5.38274042816001]
In observational data, the distribution shift is often driven by unobserved confounding factors.
This motivates us to study the domain adaptation problem with observational data.
We show a model that uses the learned lower-dimensional subspace can incur nearly ideal gap between target and source risk.
arXiv Detail & Related papers (2024-06-22T17:43:08Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - Shape Completion with Prediction of Uncertain Regions [4.689234879218989]
In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views.
We propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy.
We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances.
arXiv Detail & Related papers (2023-08-01T08:40:40Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction [63.3021778885906]
3D bounding boxes are a widespread intermediate representation in many computer vision applications.
We propose methods for leveraging our autoregressive model to make high confidence predictions and meaningful uncertainty measures.
We release a simulated dataset, COB-3D, which highlights new types of ambiguity that arise in real-world robotics applications.
arXiv Detail & Related papers (2022-10-13T23:57:40Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.