論文の概要: Consistency Evaluation of News Article Summaries Generated by Large (and Small) Language Models
- arxiv url: http://arxiv.org/abs/2502.20647v1
- Date: Fri, 28 Feb 2025 01:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:44:21.924763
- Title: Consistency Evaluation of News Article Summaries Generated by Large (and Small) Language Models
- Title(参考訳): 大(小)言語モデルによるニュース記事要約の一貫性評価
- Authors: Colleen Gilhuly, Haleh Shahzad,
- Abstract要約: 大言語モデル (LLMs) は、流動的な抽象的な要約を生成することを約束しているが、ソーステキストに基づかない幻覚的な詳細を生成することができる。
本稿では,TextRank,BART,Mistral-7B-Instruct,OpenAI GPT-3.5-Turboなど,さまざまな手法を用いてテキスト要約の探索を行う。
XL-Sumデータセットでテストすると,すべての要約モデルが一貫した要約を生成することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Text summarizing is a critical Natural Language Processing (NLP) task with applications ranging from information retrieval to content generation. Large Language Models (LLMs) have shown remarkable promise in generating fluent abstractive summaries but they can produce hallucinated details not grounded in the source text. Regardless of the method of generating a summary, high quality automated evaluations remain an open area of investigation. This paper embarks on an exploration of text summarization with a diverse set of techniques, including TextRank, BART, Mistral-7B-Instruct, and OpenAI GPT-3.5-Turbo. The generated summaries are evaluated using traditional metrics such as the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) Score and Bidirectional Encoder Representations from Transformers (BERT) Score, as well as LLM-powered evaluation methods that directly assess a generated summary's consistency with the source text. We introduce a meta evaluation score which directly assesses the performance of the LLM evaluation system (prompt + model). We find that that all summarization models produce consistent summaries when tested on the XL-Sum dataset, exceeding the consistency of the reference summaries.
- Abstract(参考訳): テキスト要約は、情報検索からコンテンツ生成まで幅広いアプリケーションに対して重要な自然言語処理(NLP)タスクである。
大言語モデル (LLM) は、流動的な抽象的な要約を生成する際、顕著な将来性を示しているが、ソーステキストに基づかない幻覚的な詳細を生成することができる。
要約を生成する方法にかかわらず、高品質な自動評価は依然として調査の領域である。
本稿では,TextRank,BART,Mistral-7B-Instruct,OpenAI GPT-3.5-Turboなど,さまざまな手法を用いてテキスト要約の探索を行う。
生成した要約は、変換器(BERT)スコアからのスコアと双方向エンコーダ表現(Recall-Oriented Understudy for Gisting Evaluation:ROUGE)スコアや、生成した要約とソーステキストとの一貫性を直接評価するLCMを利用した評価手法など、従来のメトリクスを用いて評価される。
LLM評価システム(prompt + model)の性能を直接評価するメタ評価スコアを導入する。
その結果、XL-Sumデータセット上でテストすると、すべての要約モデルが一貫した要約を生成し、参照要約の一貫性を超越していることが判明した。
関連論文リスト
- Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
本稿では,大規模言語モデル(LLM)に基づくテキスト要約評価手法を提案する。
以上の結果から,LLMの評価は人間の評価と密接に一致しているが,ROUGE-2,BERTScore,SummaCなどの広く使用されている自動測定値には一貫性がない。
論文 参考訳(メタデータ) (2024-06-30T16:12:37Z) - Automatic News Summerization [0.0]
この研究は、ニュース記事と人為的な参照要約からなるCNN-Daily Mailデータセットを用いている。
評価はROUGEスコアを用いて生成した要約の有効性と品質を評価する。
論文 参考訳(メタデータ) (2023-10-17T18:38:03Z) - Text Summarization Using Large Language Models: A Comparative Study of
MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models [0.0]
Leveraging Large Language Models (LLMs) は、要約技術の強化において、顕著な将来性を示している。
本稿では,MPT-7b-instruct,falcon-7b-instruct,OpenAI ChatGPT text-davinci-003 モデルなど,多種多様な LLM を用いたテキスト要約について検討する。
論文 参考訳(メタデータ) (2023-10-16T14:33:02Z) - Summarization is (Almost) Dead [49.360752383801305]
我々は,大規模言語モデル(LLM)のゼロショット生成能力を評価するため,新しいデータセットを開発し,人間による評価実験を行う。
本研究は, 微調整モデルにより生成した要約や要約よりも, LLM生成要約に対する人間の評価において, 明らかな優位性を示した。
論文 参考訳(メタデータ) (2023-09-18T08:13:01Z) - SummIt: Iterative Text Summarization via ChatGPT [12.966825834765814]
本稿では,ChatGPTのような大規模言語モデルに基づく反復的なテキスト要約フレームワークSummItを提案する。
我々のフレームワークは、自己評価とフィードバックによって生成された要約を反復的に洗練することを可能にする。
また, 繰り返し改良の有効性を検証し, 過補正の潜在的な問題を特定するために, 人間の評価を行う。
論文 参考訳(メタデータ) (2023-05-24T07:40:06Z) - Element-aware Summarization with Large Language Models: Expert-aligned
Evaluation and Chain-of-Thought Method [35.181659789684545]
自動要約は、ソースドキュメントのキーアイデアを含む簡潔な要約を生成する。
CNN/DailyMailやBBC XSumからの引用は、主に幻覚と情報冗長性の点で騒々しい。
本稿では,LCMを段階的に生成するためにSumCoT(Slide Chain-of-Thought)手法を提案する。
実験結果から, ROUGE-L では, 最先端の微調整 PLM とゼロショット LLM を+4.33/+4.77 で上回った。
論文 参考訳(メタデータ) (2023-05-22T18:54:35Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Understanding the Extent to which Summarization Evaluation Metrics
Measure the Information Quality of Summaries [74.28810048824519]
ROUGEとBERTScoreのトークンアライメントを分析し、要約を比較する。
それらのスコアは、情報の重複を測定するものとしては解釈できない、と我々は主張する。
論文 参考訳(メタデータ) (2020-10-23T15:55:15Z) - SummEval: Re-evaluating Summarization Evaluation [169.622515287256]
総合的かつ一貫した方法で14の自動評価指標を再評価する。
上記の自動評価指標を用いて,最近の要約モデル23をベンチマークした。
我々は、CNN/DailyMailニュースデータセットでトレーニングされたモデルによって生成された最大の要約コレクションを組み立てる。
論文 参考訳(メタデータ) (2020-07-24T16:25:19Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。