論文の概要: A Guide To Effectively Leveraging LLMs for Low-Resource Text Summarization: Data Augmentation and Semi-supervised Approaches
- arxiv url: http://arxiv.org/abs/2407.07341v2
- Date: Thu, 23 Jan 2025 21:26:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:17.401713
- Title: A Guide To Effectively Leveraging LLMs for Low-Resource Text Summarization: Data Augmentation and Semi-supervised Approaches
- Title(参考訳): 低リソーステキスト要約のためのLLMを効果的に活用するためのガイド:データ拡張と半教師付きアプローチ
- Authors: Gaurav Sahu, Olga Vechtomova, Issam H. Laradji,
- Abstract要約: 低リソーステキスト要約のための既存のアプローチは、主に推論時に大きな言語モデル(LLM)を使用して要約を直接生成する。
低リソーステキスト要約に LLM を効果的に活用する2つの新しい手法を提案する: 1) LLM ベースのデータ拡張方式である MixSumm と、(2) PPSL は、サンプル効率の半教師付きテキスト要約のための即時的な擬似ラベル方式である。
- 参考スコア(独自算出の注目度): 12.582774521907227
- License:
- Abstract: Existing approaches for low-resource text summarization primarily employ large language models (LLMs) like GPT-3 or GPT-4 at inference time to generate summaries directly; however, such approaches often suffer from inconsistent LLM outputs and are difficult to adapt to domain-specific data in low-resource scenarios. In this work, we propose two novel methods to effectively utilize LLMs for low-resource text summarization: 1) MixSumm, an LLM-based data augmentation regime that synthesizes high-quality documents (short and long) for few-shot text summarization, and 2) PPSL, a prompt-based pseudolabeling strategy for sample-efficient semi-supervised text summarization. Specifically, MixSumm leverages the open-source LLaMA-3-70b-Instruct model to generate new documents by mixing topical information derived from a small seed set, and PPSL leverages the LLaMA-3-70b-Instruct model to generate high-quality pseudo-labels in a semi-supervised learning setup. We evaluate our methods on the TweetSumm, WikiHow, and ArXiv/PubMed datasets and use L-Eval, a LLaMA-3-based evaluation metric, and ROUGE scores to measure the quality of generated summaries. Our experiments on extractive and abstractive summarization show that MixSumm and PPSL achieve competitive ROUGE scores as a fully supervised method with 5% of the labeled data.
- Abstract(参考訳): GPT-3 や GPT-4 のような大規模言語モデル(LLM)を用いて要約を直接生成する手法は、既存の低リソーステキスト要約方式では、しばしば不整合 LLM 出力に悩まされ、低リソースシナリオにおけるドメイン固有データへの適応が困難である。
本研究では,低リソーステキスト要約にLLMを効果的に活用する2つの新しい手法を提案する。
1)MixSummは、数ショットのテキスト要約のために高品質な文書(短文と長文)を合成するLLMベースのデータ拡張システムである。
2)PPSLは,サンプル効率の高い半教師付きテキスト要約のためのプロンプトベースの擬似ラベル方式である。
具体的には、オープンソースのLLaMA-3-70b-Instructモデルを利用して、小さなシードセットから派生したトピック情報を混合することで、新しいドキュメントを生成する。
我々は、TweetSumm、WikiHow、ArXiv/PubMedデータセット上で評価を行い、LLaMA-3に基づく評価指標であるL-EvalとROUGEスコアを用いて生成された要約の質を測定した。
抽出および抽象的な要約実験により,MixSummとPPSLは,5%のラベル付きデータの完全教師付き手法として,競合するROUGEスコアを達成できた。
関連論文リスト
- Redefining Simplicity: Benchmarking Large Language Models from Lexical to Document Simplification [21.727596753351072]
テキスト単純化(英: Text simplification, TS)とは、テキストの複雑さを減らし、本来の意味とキー情報を保持する過程である。
既存の研究は、大きな言語モデル(LLM)が、文の単純化に関する非LLMベースの手法よりも優れていることを示しているだけである。
論文 参考訳(メタデータ) (2025-02-12T10:38:22Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
大言語モデル(LLM)は、与えられた記事に対する抽象的な要約のゼロショット生成において最先端のパフォーマンスを達成した。
本稿では,LLMのロバスト性を測定するためのシンプルな戦略であるrelevance paraphrasingを提案する。
論文 参考訳(メタデータ) (2024-06-06T12:08:43Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
本稿では,大規模言語モデルのテキスト要約能力を,コンパクトで局所的なモデルに抽出するフレームワークであるTriSumを紹介する。
本手法は,様々なベンチマーク上での局所モデル性能を向上させる。
また、要約の合理性に関する洞察を提供することで、解釈可能性も向上する。
論文 参考訳(メタデータ) (2024-03-15T14:36:38Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
本稿では,マルチスケール位置決めについて紹介する。
(Ms-PoE)は、シンプルで効果的なプラグアンドプレイ方式で、キャパシティを向上させる。
LLMはコンテキストの中央に位置する関連情報を扱う。
論文 参考訳(メタデータ) (2024-03-05T04:58:37Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - BooookScore: A systematic exploration of book-length summarization in the era of LLMs [53.42917858142565]
我々は,識別されたエラータイプを一切含まない要約文の割合を計測する自動測度BooookScoreを開発した。
GPT-4 や 2 のようなクローズドソース LLM は,オープンソースモデルよりも BooookScore の高いサマリーを生成することがわかった。
論文 参考訳(メタデータ) (2023-10-01T20:46:44Z) - Summarization is (Almost) Dead [49.360752383801305]
我々は,大規模言語モデル(LLM)のゼロショット生成能力を評価するため,新しいデータセットを開発し,人間による評価実験を行う。
本研究は, 微調整モデルにより生成した要約や要約よりも, LLM生成要約に対する人間の評価において, 明らかな優位性を示した。
論文 参考訳(メタデータ) (2023-09-18T08:13:01Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Element-aware Summarization with Large Language Models: Expert-aligned
Evaluation and Chain-of-Thought Method [35.181659789684545]
自動要約は、ソースドキュメントのキーアイデアを含む簡潔な要約を生成する。
CNN/DailyMailやBBC XSumからの引用は、主に幻覚と情報冗長性の点で騒々しい。
本稿では,LCMを段階的に生成するためにSumCoT(Slide Chain-of-Thought)手法を提案する。
実験結果から, ROUGE-L では, 最先端の微調整 PLM とゼロショット LLM を+4.33/+4.77 で上回った。
論文 参考訳(メタデータ) (2023-05-22T18:54:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。