ProAI: Proactive Multi-Agent Conversational AI with Structured Knowledge Base for Psychiatric Diagnosis
- URL: http://arxiv.org/abs/2502.20689v1
- Date: Fri, 28 Feb 2025 03:45:39 GMT
- Title: ProAI: Proactive Multi-Agent Conversational AI with Structured Knowledge Base for Psychiatric Diagnosis
- Authors: Yuqi Wu, Guangya Wan, Jingjing Li, Shengming Zhao, Lingfeng Ma, Tianyi Ye, Ion Pop, Yanbo Zhang, Jie Chen,
- Abstract summary: Most conversational AI systems operate reactively, responding to user prompts without guiding the interaction.<n>We introduce ProAI, a goal-oriented, proactive conversational AI framework.<n>We demonstrate that ProAI achieves up to 83.3% accuracy in mental disorder differential diagnosis.
- Score: 10.8749978349074
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most LLM-driven conversational AI systems operate reactively, responding to user prompts without guiding the interaction. Most LLM-driven conversational AI systems operate reactively, responding to user prompts without guiding the interaction. However, many real-world applications-such as psychiatric diagnosis, consulting, and interviews-require AI to take a proactive role, asking the right questions and steering conversations toward specific objectives. Using mental health differential diagnosis as an application context, we introduce ProAI, a goal-oriented, proactive conversational AI framework. ProAI integrates structured knowledge-guided memory, multi-agent proactive reasoning, and a multi-faceted evaluation strategy, enabling LLMs to engage in clinician-style diagnostic reasoning rather than simple response generation. Through simulated patient interactions, user experience assessment, and professional clinical validation, we demonstrate that ProAI achieves up to 83.3% accuracy in mental disorder differential diagnosis while maintaining professional and empathetic interaction standards. These results highlight the potential for more reliable, adaptive, and goal-driven AI diagnostic assistants, advancing LLMs beyond reactive dialogue systems.
Related papers
- TRUST: An LLM-Based Dialogue System for Trauma Understanding and Structured Assessments [8.618945530676614]
This study aims to bridge the gap in mental healthcare accessibility by developing an LLM-powered dialogue system that replicates clinician behavior.
We introduce TRUST, a framework of cooperative LLM modules capable of conducting formal diagnostic interviews and assessments for PTSD.
We develop a patient simulation approach based on real-life interview transcripts to replace time-consuming and costly manual testing by clinicians.
arXiv Detail & Related papers (2025-04-30T17:58:06Z) - MAGI: Multi-Agent Guided Interview for Psychiatric Assessment [50.6150986786028]
We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational navigation.
We show that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
arXiv Detail & Related papers (2025-04-25T11:08:27Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis [0.7430974817507225]
We develop an LLM-based dialogue system, namely proactive multi-round vision-language interactions for computer-aided diagnosis (ProMRVL-CAD)<n>The proposed ProMRVL-CAD system allows proactive dialogue to provide patients with constant and reliable medical access via an integration of knowledge graph into a recommendation system.
arXiv Detail & Related papers (2025-02-15T01:14:23Z) - Dialogue is Better Than Monologue: Instructing Medical LLMs via Strategical Conversations [74.83732294523402]
We introduce a novel benchmark that simulates real-world diagnostic scenarios, integrating noise and difficulty levels aligned with USMLE standards.<n>We also explore dialogue-based fine-tuning, which transforms static datasets into conversational formats to better capture iterative reasoning processes.<n>Experiments show that dialogue-tuned models outperform traditional methods, with improvements of $9.64%$ in multi-round reasoning scenarios and $6.18%$ in accuracy in a noisy environment.
arXiv Detail & Related papers (2025-01-29T18:58:48Z) - Script-Based Dialog Policy Planning for LLM-Powered Conversational Agents: A Basic Architecture for an "AI Therapist" [0.0]
Large Language Model (LLM)-Powered Conversational Agents have the potential to provide users with scaled behavioral healthcare support.<n>We introduce a novel paradigm for dialog policy planning in conversational agents enabling them to act according to an expert-written "script"<n>We implement two variants of Script-Based Dialog Policy Planning using different prompting techniques and synthesize a total of 100 conversations with LLM-simulated patients.
arXiv Detail & Related papers (2024-12-13T12:12:47Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Depression Diagnosis Dialogue Simulation: Self-improving Psychiatrist with Tertiary Memory [35.41386783586689]
This paper introduces the Agent Mental Clinic (AMC), a self-improving conversational agent system designed to enhance depression diagnosis through simulated dialogues between patient and psychiatrist agents.
We design a psychiatrist agent consisting of a tertiary memory structure, a dialogue control and a memory sampling module, fully leveraging the skills reflected by the psychiatrist agent, achieving great accuracy on depression risk and suicide risk diagnosis via conversation.
arXiv Detail & Related papers (2024-09-20T14:25:08Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Chain-of-Interaction: Enhancing Large Language Models for Psychiatric Behavior Understanding by Dyadic Contexts [4.403408362362806]
We introduce the Chain-of-Interaction prompting method to contextualize large language models for psychiatric decision support by the dyadic interactions.
This approach enables large language models to leverage the coding scheme, patient state, and domain knowledge for patient behavioral coding.
arXiv Detail & Related papers (2024-03-20T17:47:49Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.