Variational Transformer Ansatz for the Density Operator of Steady States in Dissipative Quantum Many-Body Systems
- URL: http://arxiv.org/abs/2502.20723v1
- Date: Fri, 28 Feb 2025 05:12:43 GMT
- Title: Variational Transformer Ansatz for the Density Operator of Steady States in Dissipative Quantum Many-Body Systems
- Authors: Lu Wei, Zhian Jia, Yufeng Wang, Dagomir Kaszlikowski, Haibin Ling,
- Abstract summary: We propose the transformer density operator ansatz for determining the steady states of dissipative quantum many-body systems.<n>We demonstrate the effectiveness of our approach by numerically calculating the steady states of dissipative Ising and Heisenberg spin chain models.
- Score: 44.598178952679575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transformer architecture, known for capturing long-range dependencies and intricate patterns, has extended beyond natural language processing. Recently, it has attracted significant attention in quantum information and condensed matter physics. In this work, we propose the transformer density operator ansatz for determining the steady states of dissipative quantum many-body systems. By vectorizing the density operator as a many-body state in a doubled Hilbert space, the transformer encodes the amplitude and phase of the state's coefficients, with its parameters serving as variational variables. Our design preserves translation invariance while leveraging attention mechanisms to capture diverse long-range correlations. We demonstrate the effectiveness of our approach by numerically calculating the steady states of dissipative Ising and Heisenberg spin chain models, showing that our method achieves excellent accuracy in predicting steady states.
Related papers
- Covariant non-perturbative pointer variables for quantum fields [44.99833362998488]
We derive and renormalize the integro-differential equation that governs the detector pointer-variable dynamics.
Our formal solution, expressed in terms of Green's functions, allows for the covariant, and causal analysis of induced observables on the field.
arXiv Detail & Related papers (2025-02-03T11:53:31Z) - Physics-informed Transformers for Electronic Quantum States [0.0]
We propose a modified variational Monte-Carlo framework for neural quantum-state representations.
A Transformer is used to parametrize and autoregressively sample the corrections to the reference state.
This work paves the way for more efficient and interpretable neural quantum-state representations.
arXiv Detail & Related papers (2024-12-16T19:00:00Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Equivariant Variational Quantum Eigensolver to detect Phase Transitions through Energy Level Crossings [0.0]
We introduce an equivariant quantum circuit that preserves the total spin and the translational symmetry to accurately describe singlet and triplet excited states.<n>We also assess the impact of noise on the variational state, showing that conventional mitigation techniques like Zero Noise Extrapolation reliably restore its physical properties.
arXiv Detail & Related papers (2024-03-11T18:51:57Z) - Variational Embeddings for Many Body Quantum Systems [0.0]
We show how to include quantum devices as high-accuracy solvers on correlated degrees of freedom.
We demonstrate the effectiveness of the protocol on spin chains and small molecules.
arXiv Detail & Related papers (2023-09-15T18:00:05Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Variational Equations-of-States for Interacting Quantum Hamiltonians [0.0]
We present variational equations of state (VES) for pure states of an interacting quantum Hamiltonian.
VES can be expressed in terms of the variation of the density operators or static correlation functions.
We present three nontrivial applications of the VES.
arXiv Detail & Related papers (2023-07-03T07:51:15Z) - Quantization Variation: A New Perspective on Training Transformers with Low-Bit Precision [45.69716658698776]
In this paper, we identify the difficulty of transformer low-bit quantization-aware training on its unique variation behaviors.
We propose a variation-aware quantization scheme for both vision and language transformers.
Our solution substantially improves the 2-bit Swin-T and binary BERT-base, achieving a 3.35% and 1.4% accuracy improvement.
arXiv Detail & Related papers (2023-07-01T13:01:39Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.