Teach-to-Reason with Scoring: Self-Explainable Rationale-Driven Multi-Trait Essay Scoring
- URL: http://arxiv.org/abs/2502.20748v1
- Date: Fri, 28 Feb 2025 05:54:23 GMT
- Title: Teach-to-Reason with Scoring: Self-Explainable Rationale-Driven Multi-Trait Essay Scoring
- Authors: Heejin Do, Sangwon Ryu, Gary Geunbae Lee,
- Abstract summary: Multi-trait automated essay scoring (AES) systems provide a fine-grained evaluation of an essay's diverse aspects.<n>Prior systems fail to explain why specific trait scores are assigned.<n>We propose a self-explainable Rationale-Driven Multi-trait automated Essay scoring framework.
- Score: 5.632624116225276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-trait automated essay scoring (AES) systems provide a fine-grained evaluation of an essay's diverse aspects. While they excel in scoring, prior systems fail to explain why specific trait scores are assigned. This lack of transparency leaves instructors and learners unconvinced of the AES outputs, hindering their practical use. To address this, we propose a self-explainable Rationale-Driven Multi-trait automated Essay scoring (RaDME) framework. RaDME leverages the reasoning capabilities of large language models (LLMs) by distilling them into a smaller yet effective scorer. This more manageable student model is optimized to sequentially generate a trait score followed by the corresponding rationale, thereby inherently learning to select a more justifiable score by considering the subsequent rationale during training. Our findings indicate that while LLMs underperform in direct AES tasks, they excel in rationale generation when provided with precise numerical scores. Thus, RaDME integrates the superior reasoning capacities of LLMs into the robust scoring accuracy of an optimized smaller model. Extensive experiments demonstrate that RaDME achieves both accurate and adequate reasoning while supporting high-quality multi-trait scoring, significantly enhancing the transparency of AES.
Related papers
- R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.
Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.
We propose Reasoning-Driven Process Reward Modeling (R-PRM)
R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Rationale Behind Essay Scores: Enhancing S-LLM's Multi-Trait Essay Scoring with Rationale Generated by LLMs [2.324913904215885]
This paper introduces Rationale-based Multiple Trait Scoring (RMTS), a novel approach for multi-trait essay scoring.<n>RMTS integrates prompt-engineering-based large language models (LLMs) with a fine-tuning-based essay scoring model using a smaller large language model (S-LLM)<n>Experiments on benchmark datasets, including ASAP, ASAP++, and Feedback Prize, show that RMTS significantly outperforms state-of-the-art models and vanilla S-LLMs in trait-specific scoring.
arXiv Detail & Related papers (2024-10-18T06:35:17Z) - Reasoning Aware Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling [9.44858963874474]
Self-Consistency mitigates hallucinations in Large Language Models (LLMs) by sampling multiple reasoning paths.
We introduce Reasoning-Aware Self-Consistency (RASC), a novel framework that enhances sampling efficiency and reasoning faithfulness.
arXiv Detail & Related papers (2024-08-30T05:14:59Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.<n>Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.<n>It notably enhances accuracy by up to 12.97% while reducing latency by 50.83% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - RDBE: Reasoning Distillation-Based Evaluation Enhances Automatic Essay Scoring [0.0]
Reasoning Distillation-Based Evaluation (RDBE) integrates interpretability to elucidate the rationale behind model scores.
Our experimental results demonstrate the efficacy of RDBE across all scoring rubrics considered in the dataset.
arXiv Detail & Related papers (2024-07-03T05:49:01Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Unleashing Large Language Models' Proficiency in Zero-shot Essay Scoring [12.66710643199155]
Multi Traits' framework elicits ample potential for large language models.
We derive the overall score via trait averaging and min-max scaling.
With the help of MTS, the small-sized Llama2-13b-chat substantially outperforms ChatGPT.
arXiv Detail & Related papers (2024-04-07T12:25:35Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Self-training with Few-shot Rationalization: Teacher Explanations Aid
Student in Few-shot NLU [88.8401599172922]
We develop a framework based on self-training language models with limited task-specific labels and rationales.
We show that the neural model performance can be significantly improved by making it aware of its rationalized predictions.
arXiv Detail & Related papers (2021-09-17T00:36:46Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
We evaluate the current state-of-the-art AES models using a model adversarial evaluation scheme and associated metrics.
We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models.
arXiv Detail & Related papers (2020-07-14T03:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.