論文の概要: AutoQML: A Framework for Automated Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2502.21025v1
- Date: Fri, 28 Feb 2025 13:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:07.853963
- Title: AutoQML: A Framework for Automated Quantum Machine Learning
- Title(参考訳): AutoQML: 量子機械学習を自動化するフレームワーク
- Authors: Marco Roth, David A. Kreplin, Daniel Basilewitsch, João F. Bravo, Dennis Klau, Milan Marinov, Daniel Pranjic, Horst Stuehler, Moritz Willmann, Marc-André Zöller,
- Abstract要約: 我々は、量子機械学習にAutoMLアプローチを適用する新しいフレームワークであるemphAutoQMLを紹介する。
4つの産業ユースケースでAutoQMLを評価し、高いパフォーマンスのQMLパイプラインを生成する能力を実証した。
- 参考スコア(独自算出の注目度): 0.44138069832935184
- License:
- Abstract: Automated Machine Learning (AutoML) has significantly advanced the efficiency of ML-focused software development by automating hyperparameter optimization and pipeline construction, reducing the need for manual intervention. Quantum Machine Learning (QML) offers the potential to surpass classical machine learning (ML) capabilities by utilizing quantum computing. However, the complexity of QML presents substantial entry barriers. We introduce \emph{AutoQML}, a novel framework that adapts the AutoML approach to QML, providing a modular and unified programming interface to facilitate the development of QML pipelines. AutoQML leverages the QML library sQUlearn to support a variety of QML algorithms. The framework is capable of constructing end-to-end pipelines for supervised learning tasks, ensuring accessibility and efficacy. We evaluate AutoQML across four industrial use cases, demonstrating its ability to generate high-performing QML pipelines that are competitive with both classical ML models and manually crafted quantum solutions.
- Abstract(参考訳): 自動機械学習(Automated Machine Learning, ML)は、ハイパーパラメータ最適化とパイプライン構築を自動化することで、MLにフォーカスしたソフトウェア開発の効率を大幅に向上し、手作業による介入の必要性を低減した。
量子機械学習(QML)は、量子コンピューティングを利用することで、古典的な機械学習(ML)能力を超える可能性を提供する。
しかし、QMLの複雑さは、かなりの参入障壁をもたらす。
我々は、QMLにAutoMLアプローチを適用する新しいフレームワークである \emph{AutoQML}を紹介し、QMLパイプラインの開発を容易にするモジュール式で統一されたプログラミングインターフェースを提供する。
AutoQMLは、様々なQMLアルゴリズムをサポートするために、QMLライブラリsQUlearnを利用している。
このフレームワークは、教師付き学習タスクのためのエンドツーエンドパイプラインを構築することができ、アクセシビリティと有効性を確保することができる。
4つの産業ユースケースでAutoQMLを評価し、従来のMLモデルと手作業による量子ソリューションの両方と競合する高性能なQMLパイプラインを生成する能力を実証した。
関連論文リスト
- Quantum Machine Learning: A Hands-on Tutorial for Machine Learning Practitioners and Researchers [51.03113410951073]
このチュートリアルでは、AIのバックグラウンドを持つ読者を量子機械学習(QML)に紹介する。
自己整合性については、基本原理、代表的QMLアルゴリズム、潜在的な応用、トレーニング容易性、一般化、計算複雑性といった重要な側面を取り上げる。
論文 参考訳(メタデータ) (2025-02-03T08:33:44Z) - LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
自動プロンプト工学(APE)のための新しいフレームワーク LLM-AutoDiff について紹介する。
LLMs-AutoDiffは、各テキスト入力をトレーニング可能なパラメータとして扱い、フリーズした後方エンジンを使用して、テキスト勾配に対するフィードバック・アキンを生成する。
精度とトレーニングコストの両方において、既存のテキスト勾配ベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2025-01-28T03:18:48Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - AQMLator -- An Auto Quantum Machine Learning E-Platform [0.0]
AQMLatorは、ユーザからの最小限の入力で、MLモデルの量子層を自動的に提案し、トレーニングすることを目的としている。
標準のMLライブラリを使用するため、既存のMLパイプラインを簡単に導入できる。
論文 参考訳(メタデータ) (2024-09-26T23:23:27Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
教師付き学習タスクに適した有能なQMLモデルアーキテクチャを探索するために、深層強化学習を導入する。
我々の手法は、所定のアンザッツを使わずにQMLモデルの発見を容易にするポリシーを考案するために、RLエージェントを訓練することを含む。
提案手法は,ゲート深さを最小化しながら高い分類精度を達成できるVQCアーキテクチャの同定に成功している。
論文 参考訳(メタデータ) (2024-07-29T16:20:51Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead [5.629434388963902]
量子コンピューティング(QC)は、古典的な計算に比べて複雑な問題を解く効率を改善すると主張している。
QCが機械学習(ML)に統合されると、量子機械学習(QML)システムを生成する。
本稿では,QCの基本概念と,その古典コンピューティングに対する顕著な優位性について,より深く理解することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T11:52:54Z) - Bringing Quantum Algorithms to Automated Machine Learning: A Systematic
Review of AutoML Frameworks Regarding Extensibility for QML Algorithms [1.4469725791865982]
本稿では、量子機械学習(QML)アルゴリズムを組み込む能力について、既存のAutoMLフレームワークの選択アプローチと分析について述べる。
そのため、利用可能なオープンソースツールは市場概要に集約され、適切なフレームワークは、マルチフェーズのマルチ基準アプローチで体系的に選択されます。
ハードウェアおよびソフトウェア制約に対するQC固有のパイプラインステップと決定特性を備えた拡張型量子機械学習(AutoQML)フレームワークを構築した。
論文 参考訳(メタデータ) (2023-10-06T13:21:16Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
本稿では,高度にスケーラブルなコンポーネントワイドブースティングアルゴリズムを用いて適用可能な,解釈可能な付加モデルを構築するAutoMLシステムを提案する。
我々のシステムは、部分的な効果やペアの相互作用を可視化するなど、簡単なモデル解釈のためのツールを提供する。
解釈可能なモデル空間に制限があるにもかかわらず、我々のシステムは、ほとんどのデータセットにおける予測性能の点で競争力がある。
論文 参考訳(メタデータ) (2021-09-12T18:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。