Synthesizing Individualized Aging Brains in Health and Disease with Generative Models and Parallel Transport
- URL: http://arxiv.org/abs/2502.21049v1
- Date: Fri, 28 Feb 2025 13:45:09 GMT
- Title: Synthesizing Individualized Aging Brains in Health and Disease with Generative Models and Parallel Transport
- Authors: Jingru Fu, Yuqi Zheng, Neel Dey, Daniel Ferreira, Rodrigo Moreno,
- Abstract summary: We introduce InBrainSyn, a framework for high-resolution subject-specific longitudinal MRI scans that simulate Alzheimer's disease (AD) and normal aging.<n>InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network.<n>Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3Dtemporal T1w MRI scans, producing personalized longitudinal aging trajectories.
- Score: 3.43699245553078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain's current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer's disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at: https://github.com/Fjr9516/InBrainSyn.
Related papers
- Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.<n>We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.<n>Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.<n>Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.<n>We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.<n>Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions [4.543154658281538]
The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions.
Brain age can be predicted using MRIs and machine learning techniques.
We introduce Synthetic Brain Age ( SynthBA), a robust deep-learning model designed for predicting brain age.
arXiv Detail & Related papers (2024-06-01T08:58:40Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People [0.49478969093606673]
Synthetic longitudinal brain MRI simulates brain aging and would enable more efficient research on neurodevelopmental and neurodegenerative conditions.
We present a diffusion-based approach called SynthBrainGrow for synthetic brain aging with a two-year step.
Results show that SynthBrainGrow can accurately capture substructures and simulate structural changes such as ventricle enlargement and cortical thinning.
arXiv Detail & Related papers (2024-02-22T20:47:40Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs [12.492451825171408]
We propose a new generative model, Brain Synth, to synthesize metadata-conditioned (e.g., age- and sex-specific) MRIs.
Results indicate that more than half of the brain regions in our synthetic MRIs are anatomically accurate, with a small effect size between real and synthetic MRIs.
Our synthetic MRIs can significantly improve the training of a Convolutional Neural Network to identify accelerated aging effects.
arXiv Detail & Related papers (2023-10-07T00:05:47Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.