LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery
- URL: http://arxiv.org/abs/2410.11759v4
- Date: Wed, 12 Feb 2025 15:07:01 GMT
- Title: LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery
- Authors: Sujai Hiremath, Promit Ghosal, Kyra Gan,
- Abstract summary: We propose local search in additive noise models, LoSAM, for learning a unique DAG in ANMs with mixed causal mechanisms and general noise distributions.
We prove consistency and runtime, ensuring scalability and sample efficiency.
We test LoSAM on synthetic and real-world data, demonstrating state-of-the-art performance across all mixed mechanism settings.
- Score: 2.4305626489408465
- License:
- Abstract: Inferring causal relationships from observational data is crucial when experiments are costly or infeasible. Additive noise models (ANMs) enable unique directed acyclic graph (DAG) identification, but existing ANM methods often rely on restrictive assumptions on the data generating process, limiting their applicability to real-world settings. We propose local search in additive noise models, LoSAM, a topological ordering method for learning a unique DAG in ANMs with mixed causal mechanisms and general noise distributions. We introduce new causal substructures and criteria for identifying roots and leaves, enabling efficient top-down learning. We prove asymptotic consistency and polynomial runtime, ensuring scalability and sample efficiency. We test LoSAM on synthetic and real-world data, demonstrating state-of-the-art performance across all mixed mechanism settings.
Related papers
- Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs automatically.
We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes.
Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases.
arXiv Detail & Related papers (2024-04-25T09:23:03Z) - Effective Causal Discovery under Identifiable Heteroscedastic Noise Model [45.98718860540588]
Causal DAG learning has recently achieved promising performance in terms of both accuracy and efficiency.
We propose a novel formulation for DAG learning that accounts for the variation in noise variance across variables and observations.
We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties.
arXiv Detail & Related papers (2023-12-20T08:51:58Z) - Noisy-ArcMix: Additive Noisy Angular Margin Loss Combined With Mixup
Anomalous Sound Detection [5.1308092683559225]
Unsupervised anomalous sound detection (ASD) aims to identify anomalous sounds by learning the features of normal operational sounds and sensing their deviations.
Recent approaches have focused on the self-supervised task utilizing the classification of normal data, and advanced models have shown that securing representation space for anomalous data is important.
We propose a training technique aimed at ensuring intra-class compactness and increasing the angle gap between normal and abnormal samples.
arXiv Detail & Related papers (2023-10-10T07:04:36Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.