Robustness, Efficiency, or Privacy: Pick Two in Machine Learning
- URL: http://arxiv.org/abs/2312.14712v2
- Date: Mon, 11 Mar 2024 10:06:37 GMT
- Title: Robustness, Efficiency, or Privacy: Pick Two in Machine Learning
- Authors: Youssef Allouah, Rachid Guerraoui, and John Stephan
- Abstract summary: This paper examines the costs associated with achieving privacy and robustness in distributed machine learning architectures.
Traditional noise injection hurts accuracy by concealing poisoned inputs, while cryptographic methods clash with poisoning defenses due to their non-linear nature.
We outline future research directions aimed at reconciling this compromise with efficiency by considering weaker threat models.
- Score: 7.278033100480175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of machine learning (ML) applications relies on vast datasets and
distributed architectures which, as they grow, present major challenges. In
real-world scenarios, where data often contains sensitive information, issues
like data poisoning and hardware failures are common. Ensuring privacy and
robustness is vital for the broad adoption of ML in public life. This paper
examines the costs associated with achieving these objectives in distributed ML
architectures, from both theoretical and empirical perspectives. We overview
the meanings of privacy and robustness in distributed ML, and clarify how they
can be achieved efficiently in isolation. However, we contend that the
integration of these two objectives entails a notable compromise in
computational efficiency. In short, traditional noise injection hurts accuracy
by concealing poisoned inputs, while cryptographic methods clash with poisoning
defenses due to their non-linear nature. However, we outline future research
directions aimed at reconciling this compromise with efficiency by considering
weaker threat models.
Related papers
- Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
arXiv Detail & Related papers (2024-05-17T18:11:11Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Data Collaboration Analysis Over Matrix Manifolds [0.0]
Privacy-Preserving Machine Learning (PPML) addresses this challenge by safeguarding sensitive information.
NRI-DC framework emerges as an innovative approach, potentially resolving the 'data island' issue among institutions.
This study establishes a rigorous theoretical foundation for these collaboration functions and introduces new formulations.
arXiv Detail & Related papers (2024-03-05T08:52:16Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
Privacy-Preserving Machine Learning (PPML) methods have been introduced to safeguard the privacy and security of Machine Learning models.
Modern cryptographic scheme, Hybrid Homomorphic Encryption (HHE) has recently emerged.
We develop and evaluate an HHE-based PPML application for classifying heart disease based on sensitive ECG data.
arXiv Detail & Related papers (2024-01-26T13:12:52Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunter is an innovative model for vulnerability identification that employs the Conformer mechanism.
This mechanism fuses self-attention with convolutional networks to capture both local, position-wise features and global, content-based interactions.
arXiv Detail & Related papers (2023-09-27T00:10:29Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - On the Privacy-Robustness-Utility Trilemma in Distributed Learning [7.778461949427662]
We present the first tight analysis of the error incurred by any algorithm ensuring robustness against a fraction of adversarial machines.
Our analysis exhibits a fundamental trade-off between privacy, robustness, and utility.
arXiv Detail & Related papers (2023-02-09T17:24:18Z) - Bounding Information Leakage in Machine Learning [26.64770573405079]
This paper investigates fundamental bounds on information leakage.
We identify and bound the success rate of the worst-case membership inference attack.
We derive bounds on the mutual information between the sensitive attributes and model parameters.
arXiv Detail & Related papers (2021-05-09T08:49:14Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
Adversarial robustness has attracted extensive studies recently by revealing the vulnerability and intrinsic characteristics of deep networks.
In this work we investigate the adversarial vulnerability as well as defense under long-tailed distributions.
We propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant and data re-balancing.
arXiv Detail & Related papers (2021-04-06T17:53:08Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
In this paper, we point out the side effects of current randomized smoothing.
Specifically, we articulate and prove two major points: 1) the decision boundaries of smoothed classifiers will shrink, resulting in disparity in class-wise accuracy; 2) applying noise augmentation in the training process does not necessarily resolve the shrinking issue due to the inconsistent learning objectives.
arXiv Detail & Related papers (2020-03-02T23:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.