Securing Reliability: A Brief Overview on Enhancing In-Context Learning
for Foundation Models
- URL: http://arxiv.org/abs/2402.17671v1
- Date: Tue, 27 Feb 2024 16:44:09 GMT
- Title: Securing Reliability: A Brief Overview on Enhancing In-Context Learning
for Foundation Models
- Authors: Yunpeng Huang, Yaonan Gu, Jingwei Xu, Zhihong Zhu, Zhaorun Chen,
Xiaoxing Ma
- Abstract summary: In-context learning (ICL) paradigm thrives but also encounters issues such as toxicity, hallucination, disparity, adversarial vulnerability, and inconsistency.
Ensuring the reliability and responsibility of foundation models (FMs) is crucial for the sustainable development of the AI ecosystem.
- Score: 10.889829033820433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As foundation models (FMs) continue to shape the landscape of AI, the
in-context learning (ICL) paradigm thrives but also encounters issues such as
toxicity, hallucination, disparity, adversarial vulnerability, and
inconsistency. Ensuring the reliability and responsibility of FMs is crucial
for the sustainable development of the AI ecosystem. In this concise overview,
we investigate recent advancements in enhancing the reliability and
trustworthiness of FMs within ICL frameworks, focusing on four key
methodologies, each with its corresponding subgoals. We sincerely hope this
paper can provide valuable insights for researchers and practitioners
endeavoring to build safe and dependable FMs and foster a stable and consistent
ICL environment, thereby unlocking their vast potential.
Related papers
- FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments [0.0]
We propose a framework that unifies federated learning with explainable multi-modal reasoning to ensure trustworthiness in decentralized, dynamic settings.
Our approach, called FedMM-X, leverages cross-modal consistency checks, client-level interpretability mechanisms, and dynamic trust calibration.
Our findings pave the way toward developing robust, interpretable, and socially responsible AI systems in Real-world environments.
arXiv Detail & Related papers (2025-03-25T11:28:21Z) - REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models [59.445672459851274]
REVAL is a comprehensive benchmark designed to evaluate the textbfREliability and textbfVALue of Large Vision-Language Models.
REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability and Values.
We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro.
arXiv Detail & Related papers (2025-03-20T07:54:35Z) - Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models [91.24296813969003]
This paper advocates integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML.
We argue that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models.
arXiv Detail & Related papers (2025-02-28T14:57:33Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [333.9220561243189]
Generative Foundation Models (GenFMs) have emerged as transformative tools.
Their widespread adoption raises critical concerns regarding trustworthiness across dimensions.
This paper presents a comprehensive framework to address these challenges through three key contributions.
arXiv Detail & Related papers (2025-02-20T06:20:36Z) - Ten Challenging Problems in Federated Foundation Models [55.343738234307544]
Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning.
This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency.
arXiv Detail & Related papers (2025-02-14T04:01:15Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - TPFL: A Trustworthy Personalized Federated Learning Framework via Subjective Logic [13.079535924498977]
Federated learning (FL) enables collaborative model training across distributed clients while preserving data privacy.
Most FL approaches focusing solely on privacy protection fall short in scenarios where trustworthiness is crucial.
We introduce Trustworthy Personalized Federated Learning framework designed for classification tasks via subjective logic.
arXiv Detail & Related papers (2024-10-16T07:33:29Z) - FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" [74.7488607599921]
FaithEval is a benchmark to evaluate the faithfulness of large language models (LLMs) in contextual scenarios.
FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework.
arXiv Detail & Related papers (2024-09-30T06:27:53Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Position Paper: Assessing Robustness, Privacy, and Fairness in Federated
Learning Integrated with Foundation Models [39.86957940261993]
Integration of Foundation Models (FMs) into Federated Learning (FL) introduces novel issues in terms of robustness, privacy, and fairness.
We analyze the trade-offs involved, uncover the threats and issues introduced by this integration, and propose a set of criteria and strategies for navigating these challenges.
arXiv Detail & Related papers (2024-02-02T19:26:00Z) - Assessing the Sustainability and Trustworthiness of Federated Learning
Models [7.228253116465784]
This work introduces the sustainability pillar to the most recent and comprehensive trustworthy Federated Learning taxonomy.
It assesses the FL system environmental impact, incorporating notions and metrics for hardware efficiency, federation complexity, and energy grid carbon intensity.
It implements an algorithm for evaluating the trustworthiness of FL models by incorporating the sustainability pillar.
arXiv Detail & Related papers (2023-10-31T13:14:43Z) - Trustworthy Federated Learning: A Survey [0.5089078998562185]
Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI)
We provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy.
We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy.
arXiv Detail & Related papers (2023-05-19T09:11:26Z) - Learning Stability Attention in Vision-based End-to-end Driving Policies [100.57791628642624]
We propose to leverage control Lyapunov functions (CLFs) to equip end-to-end vision-based policies with stability properties.
We present an uncertainty propagation technique that is tightly integrated into att-CLFs.
arXiv Detail & Related papers (2023-04-05T20:31:10Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.