Fast and Accurate Gigapixel Pathological Image Classification with Hierarchical Distillation Multi-Instance Learning
- URL: http://arxiv.org/abs/2502.21130v2
- Date: Mon, 03 Mar 2025 08:39:54 GMT
- Title: Fast and Accurate Gigapixel Pathological Image Classification with Hierarchical Distillation Multi-Instance Learning
- Authors: Jiuyang Dong, Junjun Jiang, Kui Jiang, Jiahan Li, Yongbing Zhang,
- Abstract summary: HDMIL is a hierarchical distillation multi-instance learning framework that achieves fast and accurate classification by eliminating irrelevant patches.<n> HDMIL consists of two key components: the dynamic multi-instance network (DMIN) and the lightweight instance pre-screening network (LIPN)
- Score: 51.525891360380285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although multi-instance learning (MIL) has succeeded in pathological image classification, it faces the challenge of high inference costs due to processing numerous patches from gigapixel whole slide images (WSIs). To address this, we propose HDMIL, a hierarchical distillation multi-instance learning framework that achieves fast and accurate classification by eliminating irrelevant patches. HDMIL consists of two key components: the dynamic multi-instance network (DMIN) and the lightweight instance pre-screening network (LIPN). DMIN operates on high-resolution WSIs, while LIPN operates on the corresponding low-resolution counterparts. During training, DMIN are trained for WSI classification while generating attention-score-based masks that indicate irrelevant patches. These masks then guide the training of LIPN to predict the relevance of each low-resolution patch. During testing, LIPN first determines the useful regions within low-resolution WSIs, which indirectly enables us to eliminate irrelevant regions in high-resolution WSIs, thereby reducing inference time without causing performance degradation. In addition, we further design the first Chebyshev-polynomials-based Kolmogorov-Arnold classifier in computational pathology, which enhances the performance of HDMIL through learnable activation layers. Extensive experiments on three public datasets demonstrate that HDMIL outperforms previous state-of-the-art methods, e.g., achieving improvements of 3.13% in AUC while reducing inference time by 28.6% on the Camelyon16 dataset.
Related papers
- Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.
We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.
Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - MsaMIL-Net: An End-to-End Multi-Scale Aware Multiple Instance Learning Network for Efficient Whole Slide Image Classification [0.7510165488300369]
Bag-based Multiple Instance Learning (MIL) approaches have emerged as the mainstream methodology for Whole Slide Image (WSI) classification.
This paper proposes an end-to-end multi-scale WSI classification framework that integrates multi-scale feature extraction with multiple instance learning.
arXiv Detail & Related papers (2025-03-11T16:16:44Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
This thesis focuses on retinal blood vessel segmentation tasks.
It provides an extensive literature review of deep learning-based medical image segmentation approaches.
It proposes a novel efficient, simple multiview learning framework.
arXiv Detail & Related papers (2023-11-02T06:31:08Z) - Multi-Level Contrastive Learning for Dense Prediction Task [59.591755258395594]
We present Multi-Level Contrastive Learning for Dense Prediction Task (MCL), an efficient self-supervised method for learning region-level feature representation for dense prediction tasks.
Our method is motivated by the three key factors in detection: localization, scale consistency and recognition.
Our method consistently outperforms the recent state-of-the-art methods on various datasets with significant margins.
arXiv Detail & Related papers (2023-04-04T17:59:04Z) - Dual Attention Model with Reinforcement Learning for Classification of Histology Whole-Slide Images [8.404881822414898]
Digital whole slide images (WSIs) are generally captured at microscopic resolution and encompass extensive spatial data.
We propose a novel dual attention approach, consisting of two main components, both inspired by the visual examination process of a pathologist.
We show that the proposed model achieves performance better than or comparable to the state-of-the-art methods while processing less than 10% of the WSI at the highest magnification.
arXiv Detail & Related papers (2023-02-19T22:26:25Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples.
We propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local to local (L2L) similarity metric.
Experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state-of-the-art by a large margin.
arXiv Detail & Related papers (2022-10-04T07:54:40Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Learning Compact Representations of Neural Networks using DiscriminAtive
Masking (DAM) [2.1629276606305057]
A central goal in deep learning is to learn compact representations of features at every layer of a neural network.
We present a novel single-stage structured pruning method termed DiscriminAtive Masking (DAM)
We show that our proposed DAM approach has remarkably good performance over various applications.
arXiv Detail & Related papers (2021-10-01T23:31:46Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.