SYN-LUNGS: Towards Simulating Lung Nodules with Anatomy-Informed Digital Twins for AI Training
- URL: http://arxiv.org/abs/2502.21187v2
- Date: Tue, 04 Mar 2025 12:18:40 GMT
- Title: SYN-LUNGS: Towards Simulating Lung Nodules with Anatomy-Informed Digital Twins for AI Training
- Authors: Fakrul Islam Tushar, Lavsen Dahal, Cindy McCabe, Fong Chi Ho, Paul Segars, Ehsan Abadi, Kyle J. Lafata, Ehsan Samei, Joseph Y. Lo,
- Abstract summary: Generative models for lung cancer screening are limited by data scarcity, impacting generalizability and clinical applicability.<n>We introduce SYN-LUNGS, a framework for generating high-quality 3D CT images with detailed annotations.<n>The dataset includes 3,072 nodule images from 1,044 simulated CT scans, with 512 lesions and 174 digital twins.
- Score: 1.4820790252910163
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI models for lung cancer screening are limited by data scarcity, impacting generalizability and clinical applicability. Generative models address this issue but are constrained by training data variability. We introduce SYN-LUNGS, a framework for generating high-quality 3D CT images with detailed annotations. SYN-LUNGS integrates XCAT3 phantoms for digital twin generation, X-Lesions for nodule simulation (varying size, location, and appearance), and DukeSim for CT image formation with vendor and parameter variability. The dataset includes 3,072 nodule images from 1,044 simulated CT scans, with 512 lesions and 174 digital twins. Models trained on clinical + simulated data outperform clinical only models, achieving 10% improvement in detection, 2-9% in segmentation and classification, and enhanced synthesis.By incorporating anatomy-informed simulations, SYN-LUNGS provides a scalable approach for AI model development, particularly in rare disease representation and improving model reliability.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.<n>Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Knowledge-based in silico models and dataset for the comparative
evaluation of mammography AI for a range of breast characteristics, lesion
conspicuities and doses [2.9362519537872647]
We release M-SYNTH, a dataset of cohorts with four breast fibroglandular density distributions imaged at different exposure levels.
We find that model performance decreases with increasing breast density and increases with higher mass density, as expected.
As exposure levels decrease, AI model performance drops with the highest performance achieved at exposure levels lower than the nominal recommended dose for the breast type.
arXiv Detail & Related papers (2023-10-27T21:14:30Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - CS$^2$: A Controllable and Simultaneous Synthesizer of Images and
Annotations with Minimal Human Intervention [3.465671939864428]
We propose a novel controllable and simultaneous synthesizer (dubbed CS$2$) to generate both realistic images and corresponding annotations at the same time.
Our contributions include 1) a conditional image synthesis network that receives both style information from reference CT images and structural information from unsupervised segmentation masks, and 2) a corresponding segmentation mask network to automatically segment these synthesized images simultaneously.
arXiv Detail & Related papers (2022-06-20T15:09:10Z) - SyntheX: Scaling Up Learning-based X-ray Image Analysis Through In
Silico Experiments [12.019996672009375]
We show that creating realistic simulated images from human models is a viable alternative to large-scale in situ data collection.
Because synthetic generation of training data from human-based models scales easily, we find that our model transfer paradigm for X-ray image analysis, which we refer to as SyntheX, can even outperform real data-trained models.
arXiv Detail & Related papers (2022-06-13T13:08:41Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
We propose the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes when trained on a small dataset of chest CT-scans.
We show that CT-SGAN can significantly improve lung detection accuracy by pre-training a nodule on a vast amount of synthetic data.
arXiv Detail & Related papers (2021-10-14T22:20:40Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.