論文の概要: Towards Developing Ethical Reasoners: Integrating Probabilistic Reasoning and Decision-Making for Complex AI Systems
- arxiv url: http://arxiv.org/abs/2502.21250v1
- Date: Fri, 28 Feb 2025 17:25:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:42:17.109416
- Title: Towards Developing Ethical Reasoners: Integrating Probabilistic Reasoning and Decision-Making for Complex AI Systems
- Title(参考訳): 倫理的推論の開発に向けて:複雑なAIシステムのための確率論的推論と意思決定の統合
- Authors: Nijesh Upreti, Jessica Ciupa, Vaishak Belle,
- Abstract要約: 計算倫理フレームワークは、複雑な実環境で動作するAIと自律システムにとって不可欠である。
既存のアプローチは、倫理原則を動的で曖昧な文脈に組み込むために必要な適応性に欠けることが多い。
本稿では,中間表現,確率論的推論,知識表現を組み合わせた総合的メタレベルフレームワークの構築に必要な要素について概説する。
- 参考スコア(独自算出の注目度): 4.854297874710511
- License:
- Abstract: A computational ethics framework is essential for AI and autonomous systems operating in complex, real-world environments. Existing approaches often lack the adaptability needed to integrate ethical principles into dynamic and ambiguous contexts, limiting their effectiveness across diverse scenarios. To address these challenges, we outline the necessary ingredients for building a holistic, meta-level framework that combines intermediate representations, probabilistic reasoning, and knowledge representation. The specifications therein emphasize scalability, supporting ethical reasoning at both individual decision-making levels and within the collective dynamics of multi-agent systems. By integrating theoretical principles with contextual factors, it facilitates structured and context-aware decision-making, ensuring alignment with overarching ethical standards. We further explore proposed theorems outlining how ethical reasoners should operate, offering a foundation for practical implementation. These constructs aim to support the development of robust and ethically reliable AI systems capable of navigating the complexities of real-world moral decision-making scenarios.
- Abstract(参考訳): 計算倫理フレームワークは、複雑な実環境で動作するAIと自律システムにとって不可欠である。
既存のアプローチは、倫理的原則を動的で曖昧な文脈に組み込むために必要な適応性に欠けており、様々なシナリオで有効性を制限している。
これらの課題に対処するために、中間表現、確率論的推論、知識表現を組み合わせた総合的メタレベルフレームワークを構築するために必要な要素を概説する。
仕様はスケーラビリティを強調し、個々の意思決定レベルとマルチエージェントシステムの集合力学の両方において倫理的推論をサポートする。
理論的原則を文脈的要因と統合することにより、構造化され、文脈に適応した意思決定を促進し、包括的な倫理基準との整合性を確保する。
さらに、倫理的推論者がどう行動すべきかを概説し、実践的実装の基盤を提供する。
これらの構造は、現実の道徳的意思決定シナリオの複雑さをナビゲートできる堅牢で倫理的に信頼できるAIシステムの開発を支援することを目的としている。
関連論文リスト
- Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
私は、責任と倫理的AIを促進する努力が、確立された文脈規範に対するこの軽視に必然的に貢献し、正当化することができると論じます。
私は、道徳的保護よりも道徳的革新のAI倫理における現在の狭い優先順位付けに疑問を呈する。
論文 参考訳(メタデータ) (2024-12-06T15:36:13Z) - Delegating Responsibilities to Intelligent Autonomous Systems: Challenges and Benefits [1.7205106391379026]
AIシステムは自律性と適応性で機能するので、技術的社会システムにおける伝統的な道徳的責任の境界が課題となっている。
本稿では,知的自律エージェントへの責任委譲に関する議論の進展と,そのような実践の倫理的意味について考察する。
論文 参考訳(メタデータ) (2024-11-06T18:40:38Z) - AI Ethics by Design: Implementing Customizable Guardrails for Responsible AI Development [0.0]
我々は、ルール、ポリシー、AIアシスタントを統合して、責任あるAI行動を保証する構造を提案する。
われわれのアプローチは倫理的多元主義に対応し、AIガバナンスの進化の展望に柔軟で適応可能なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-05T18:38:30Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Attributing Responsibility in AI-Induced Incidents: A Computational Reflective Equilibrium Framework for Accountability [13.343937277604892]
AI(Artificial Intelligence)の広範な統合は、AI対応システムに関わるインシデントが発生した場合の責任と説明責任において、複雑な課題を導入している。
この研究は、すべての利害関係者に対して、一貫性があり倫理的に許容される責任帰属の枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-25T18:11:03Z) - Resolving Ethics Trade-offs in Implementing Responsible AI [18.894725256708128]
初歩的なものから複雑なものまで、トレードオフを通じて緊張に対処するための5つのアプローチをカバーします。
いずれのアプローチも、すべての組織、システム、アプリケーションに適していない可能性が高い。
i)緊張の積極的な識別、(ii)倫理的側面の優先順位付けと重み付け、(iii)トレードオフ決定の正当化と文書化からなる枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-16T04:14:23Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
原則に基づく倫理保証議論パターンは、AI倫理のランドスケープにおける1つの提案である。
本稿では,AIベースの遠隔医療システムであるDoraの利用に対して,この倫理保証フレームワークを適用した事例研究の中間的結果を示す。
論文 参考訳(メタデータ) (2023-05-23T16:04:59Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。