論文の概要: Does Generation Require Memorization? Creative Diffusion Models using Ambient Diffusion
- arxiv url: http://arxiv.org/abs/2502.21278v1
- Date: Fri, 28 Feb 2025 17:57:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:45.043380
- Title: Does Generation Require Memorization? Creative Diffusion Models using Ambient Diffusion
- Title(参考訳): 生成には記憶が必要か? -環境拡散を用いた創造的拡散モデル-
- Authors: Kulin Shah, Alkis Kalavasis, Adam R. Klivans, Giannis Daras,
- Abstract要約: 本研究では,ノイズスケールでノイズデータを用いて拡散モデルを訓練する原理的手法を提案する。
本手法は,テキスト条件モデルと非条件モデルの両方において,画像品質を低下させることなくメモリ化を大幅に削減する。
- 参考スコア(独自算出の注目度): 24.154018424818037
- License:
- Abstract: There is strong empirical evidence that the state-of-the-art diffusion modeling paradigm leads to models that memorize the training set, especially when the training set is small. Prior methods to mitigate the memorization problem often lead to a decrease in image quality. Is it possible to obtain strong and creative generative models, i.e., models that achieve high generation quality and low memorization? Despite the current pessimistic landscape of results, we make significant progress in pushing the trade-off between fidelity and memorization. We first provide theoretical evidence that memorization in diffusion models is only necessary for denoising problems at low noise scales (usually used in generating high-frequency details). Using this theoretical insight, we propose a simple, principled method to train the diffusion models using noisy data at large noise scales. We show that our method significantly reduces memorization without decreasing the image quality, for both text-conditional and unconditional models and for a variety of data availability settings.
- Abstract(参考訳): 最先端拡散モデリングパラダイムがトレーニングセット、特にトレーニングセットが小さい場合には、トレーニングセットを記憶するモデルにつながるという、強い実証的な証拠がある。
メモリ化問題を緩和する以前の方法は、しばしば画像の品質を低下させる。
強靭で創造的な生成モデル、すなわち、高品質で記憶力の低いモデルを得ることは可能か?
現在の悲観的な結果の状況にもかかわらず、私たちは忠実さと記憶のトレードオフを推し進める上で大きな進歩を遂げています。
まず,拡散モデルにおける暗記が低雑音スケール(通常は高周波細部生成に使用される)で問題をノイズ化する上でのみ必要であることを示す。
この理論的知見を用いて,ノイズスケールでノイズデータを用いて拡散モデルを訓練する簡易な原理的手法を提案する。
本手法は,テキスト条件モデルと非条件モデル,および各種データ可用性設定において,画像品質を低下させることなくメモリ化を著しく低減することを示す。
関連論文リスト
- Redistribute Ensemble Training for Mitigating Memorization in Diffusion Models [31.92526915009259]
拡散モデルは非常に高品質なサンプルを生成する能力で知られている。
最近のメモリ緩和法は、主にテキストモダリティの文脈における問題に対処している。
本稿では,視覚的モダリティの観点からの拡散モデルの新たな手法を提案する。
論文 参考訳(メタデータ) (2025-02-13T15:56:44Z) - Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
本稿では,任意の破損型を持つ雑音データから拡散モデルを反復的に学習する,原則的予測最大化(EM)フレームワークを提案する。
筆者らはモンテカルロ法を用いて,ノイズ測定からクリーンな画像を正確に推定し,次いで再構成画像を用いて拡散モデルを訓練した。
論文 参考訳(メタデータ) (2024-10-15T03:54:59Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
大規模テキスト・画像拡散モデルはテキスト入力から高品質な画像を生成するのに優れている。
研究は、トレーニングデータを記憶し複製する傾向を示すため、懸念が生じる。
データ重複、複製されたキャプション、トークンのトリガーなどの原因を探る。
論文 参考訳(メタデータ) (2024-06-01T15:47:13Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
アンビエント拡散(アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散
本稿では,ノイズの多い学習データのみを考慮し,故障のない分布から確実にサンプルを採取する拡散モデルのトレーニングのための最初のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-20T14:22:12Z) - Continual Learning of Diffusion Models with Generative Distillation [34.52513912701778]
拡散モデルは画像合成における最先端性能を達成する強力な生成モデルである。
本稿では,拡散モデルの全逆過程を除去する生成蒸留法を提案する。
論文 参考訳(メタデータ) (2023-11-23T14:33:03Z) - On Memorization in Diffusion Models [44.031805633114985]
より小さなデータセットでは記憶の挙動が生じる傾向があることを示す。
我々は、有効モデル記憶(EMM)の観点から、影響因子がこれらの記憶行動に与える影響を定量化する。
本研究は,拡散モデル利用者にとって実用的意義を持ち,深部生成モデルの理論研究の手がかりを提供する。
論文 参考訳(メタデータ) (2023-10-04T09:04:20Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
ジャンプの学習は、様々な種類のデータの生成モデリングのための一般的なレシピである。
ジャンプの学習が、デノゼの学習と相容れないパフォーマンスを期待される場合と、より良いパフォーマンスを期待される場合を実証する。
論文 参考訳(メタデータ) (2023-05-28T05:38:28Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z) - Dynamic Dual-Output Diffusion Models [100.32273175423146]
反復分解に基づく生成は、他の生成モデルのクラスに匹敵する品質を示すことが示されている。
この方法の大きな欠点は、競合する結果を生み出すために数百のイテレーションが必要であることである。
近年の研究では、より少ないイテレーションでより高速に生成できるソリューションが提案されているが、画像の品質は徐々に低下している。
論文 参考訳(メタデータ) (2022-03-08T11:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。