論文の概要: A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network
- arxiv url: http://arxiv.org/abs/2503.00036v1
- Date: Tue, 25 Feb 2025 04:34:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 03:20:23.398676
- Title: A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network
- Title(参考訳): 時間周波数領域特徴フュージョンと動的グラフニューラルネットワークを用いた無線センサネットワークにおける時空間異常検出法
- Authors: Miao Ye, Zhibang Jiang, Xingsi Xue, Xingwang Li, Peng Wen, Yong Wang,
- Abstract要約: アテンションベースのトランスフォーマーは、長期依存を捕捉する能力により、無線センサネットワーク(WSN)のタイミング異常検出において重要な役割を担っている。
本稿では,周波数領域の特徴を動的グラフニューラルネットワーク(GNN)と統合したWSN異常検出手法を提案する。
- 参考スコア(独自算出の注目度): 9.031267813814118
- License:
- Abstract: Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies. However, there are several issues that must be addressed, such as the fact that their ability to capture long-term dependencies is not completely reliable, their computational complexity levels are high, and the spatiotemporal features of WSN timing data are not sufficiently extracted for detecting the correlation anomalies of multinode WSN timing data. To address these limitations, this paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework. First, the discrete wavelet transform effectively decomposes trend and seasonal components of time series to solve the poor long-term reliability of transformers. Second, a frequency-domain attention mechanism is designed to make full use of the difference between the amplitude distributions of normal data and anomalous data in this domain. Finally, a multimodal fusion-based dynamic graph convolutional network (MFDGCN) is designed by combining an attention mechanism and a graph convolutional network (GCN) to adaptively extract spatial correlation features. A series of experiments conducted on public datasets and their results demonstrate that the anomaly detection method designed in this paper exhibits superior precision and recall than the existing methods do, with an F1 score of 93.5%, representing an improvement of 2.9% over that of the existing models.
- Abstract(参考訳): アテンションベースのトランスフォーマーは、長期依存を捕捉する能力により、無線センサネットワーク(WSN)のタイミング異常検出において重要な役割を担っている。
しかし、長期依存関係をキャプチャする能力が完全に信頼できないこと、計算複雑性が高いこと、WSNタイミングデータの時空間的特徴が多ノードWSNタイミングデータの相関異常を検出するのに十分抽出されていないことなど、いくつかの課題に対処する必要がある。
これらの制約に対処するため、設計した自己エンコーダ再構築フレームワークの下で、周波数領域の特徴を動的グラフニューラルネットワーク(GNN)と統合するWSN異常検出手法を提案する。
第一に、離散ウェーブレット変換は時系列の傾向と季節成分を効果的に分解し、変圧器の長期信頼性の低下を解決する。
第二に、周波数領域の注意機構は、この領域における正規データの振幅分布と異常データの差をフル活用するように設計されている。
最後に、マルチモーダル融合に基づく動的グラフ畳み込みネットワーク(MFDGCN)を、アテンション機構とグラフ畳み込みネットワーク(GCN)を組み合わせて設計し、空間相関特性を適応的に抽出する。
本研究で設計した異常検出法は, 従来の手法よりも精度が高く, F1スコアは93.5%であり, 既存モデルよりも2.9%向上した。
関連論文リスト
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
本稿では,オートエンコーダに基づく自己教師付き学習に基づく異常ノード検出手法を設計する。
本手法は,時間的WSNデータフロー特徴抽出,空間的位置特徴抽出,モーダルWSN相関特徴抽出を統合する。
実験の結果、設計法はベースラインを上回り、F1スコアは90.6%に達した。
論文 参考訳(メタデータ) (2022-12-26T01:54:02Z) - A Novel Anomaly Detection Method for Multimodal WSN Data Flow via a
Dynamic Graph Neural Network [4.383559317152992]
無線センサネットワーク(WSN)データストリームの時間的特徴と空間的特徴を分析し,システム異常を識別するために,異常検出が広く用いられている。
3つのグラフニューラルネットワーク(GNN)を用いて、WSNデータフローの時間的特徴を別々に抽出する。
各センサノードから抽出した時間的特徴とモーダル相関特徴を1つのベクトル表現に融合する。
WSNノードの現在の時系列データを予測し、融合特徴に応じて異常状態を識別する。
論文 参考訳(メタデータ) (2022-02-19T12:32:05Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
本研究は,グラフ構造とグラフ畳み込みを自動的に学習することにより,多変量時系列異常検出のための新しいフレームワークGTAを提案する。
また,グラフノード間の異常情報フローをモデル化するために,影響伝播畳み込みという新しいグラフ畳み込みを考案した。
4つの公開異常検出ベンチマークの実験は、我々のアプローチが他の最先端技術よりも優れていることをさらに証明している。
論文 参考訳(メタデータ) (2021-04-08T01:45:28Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
エッジストリームにおける異常検出のための新しいアプローチであるF-FADEを提案する。
ノード対間の相互作用の周波数の時間進化分布を効率的にモデル化するために、新しい周波数分解技術を用いる。
F-FADEは、一定メモリしか必要とせず、時間的および構造的な変化を伴う幅広い種類の異常をオンラインストリーミング環境で処理できる。
論文 参考訳(メタデータ) (2020-11-09T19:55:40Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。