論文の概要: RURA-Net: A general disease diagnosis method based on Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2503.00052v1
- Date: Wed, 26 Feb 2025 16:41:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:07.560443
- Title: RURA-Net: A general disease diagnosis method based on Zero-Shot Learning
- Title(参考訳): RURA-Net:Zero-Shot Learningに基づく一般的な疾患診断法
- Authors: Yan Su, Qiulin Wu, Weizhen Li, Chengchang Pan, Honggang Qi,
- Abstract要約: 本研究はゼロショット学習に基づく一般的な疾患診断手法を提案する。
シームズニューラルネットワークは、標的疾患に類似した疾患を見つけるために使用される。
U-Netセグメンテーションモデルは、疾患の重要な病変を正確にセグメンテーションするために使用される。
- 参考スコア(独自算出の注目度): 6.528066461340262
- License:
- Abstract: The training of deep learning models relies on a large amount of labeled data. However, the high cost of medical labeling seriously hinders the development of deep learning in the medical field. Our study proposes a general disease diagnosis approach based on Zero-Shot Learning. The Siamese neural network is used to find similar diseases for the target diseases, and the U-Net segmentation model is used to accurately segment the key lesions of the disease. Finally, based on the ResNet-Agglomerative clustering algorithm, a clustering model is trained on a large number of sample data of similar diseases to obtain a approximate diagnosis of the target disease. Zero-Shot Learning of the target disease is then successfully achieved. To evaluate the validity of the model, we validated our method on a dataset of ophthalmic diseases in CFP modality. The external dataset was used to test its performance, and the accuracy=0.8395, precision=0.8094, recall=0.8463, F1 Score=0.8274, AUC=0.9226, which exceeded the indexes of most Few-Shot Learning and One-Shot Learning models. It proves that our method has great potential and reference value in the medical field, where annotation data is usually scarce and expensive to obtain.
- Abstract(参考訳): ディープラーニングモデルのトレーニングは、大量のラベル付きデータに依存する。
しかし、医療ラベルの高コスト化は、医学分野における深層学習の発達を著しく妨げている。
本研究はゼロショット学習に基づく一般的な疾患診断手法を提案する。
シームズニューラルネットワークは、標的疾患に類似した疾患を見つけるために使用され、U-Netセグメンテーションモデルは、疾患の重要な病変を正確に分類するために使用される。
最後に、ResNet-Agglomerative Clusteringアルゴリズムに基づいて、類似疾患の多数のサンプルデータに基づいてクラスタリングモデルを訓練し、標的疾患の近似診断を得る。
標的疾患のゼロショット学習が達成される。
本モデルの有効性を評価するため,CFPモダリティの眼疾患のデータセット上で本手法の有効性を検証した。
外部データセットは、その性能をテストするために使用され、精度=0.8395、精度=0.8094、リコール=0.8463、F1スコア=0.8274、AUC=0.9226は、多くのFew-Shot LearningおよびOne-Shot Learningモデルのインデックスを超えた。
本手法は医用分野において, アノテーションデータが少ない場合や, 入手に費用がかかる場合において, 高い可能性と基準値を有することを示す。
関連論文リスト
- Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
新型コロナウイルス、結核(TB)、肺炎などの肺疾患は、依然として深刻な世界的な健康上の問題となっている。
救急医療と科学者は、早期の新型コロナウイルス(COVID-19)の診断に信頼性と正確なアプローチを作成するために、集中的に取り組んでいる。
論文 参考訳(メタデータ) (2023-10-09T18:38:49Z) - Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience [21.420302408947194]
我々は、ソースグループからのデータを最適に組み合わせ、ターゲットグループで予測する、重み付き経験的リスク最小化手法を開発した。
本研究では,アルツハイマー病の診断と脳年齢推定のためのMLモデルを構築するため,20の神経画像研究から15,363人のマルチソースデータに適用した。
論文 参考訳(メタデータ) (2023-08-06T18:05:39Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
我々は、高度に異種な臨床データに基づいてディープラーニングモデルを訓練するための新しいディープラーニングアーキテクチャ、MUCRANを開発した。
われわれは、2019年以前にマサチューセッツ総合病院から収集した16,821個の臨床T1軸性脳MRIを用いてMUCRANを訓練した。
このモデルでは,新たに収集したデータに対して90%以上の精度で頑健な性能を示した。
論文 参考訳(メタデータ) (2022-05-05T18:39:09Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
そこで本研究では,1回の検査で複数の病態を検出できる多ラベル疾患予測モデルを提案する。
提案モデルでは,AUCスコアが0.896であった。
論文 参考訳(メタデータ) (2022-02-08T00:43:57Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
心臓病は、世界中の多くの人々の生活を妨げる最も致命的な病気の1つである。
本稿では,健康な人と非健康な人の分類に1次元畳み込みニューラルネットワークを用いた新しいディープラーニングアーキテクチャを提案する。
提案するネットワークは、データセット上で97%以上のトレーニング精度と96%のテスト精度を達成する。
論文 参考訳(メタデータ) (2021-05-22T22:00:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。