RecCrysFormer: Refined Protein Structural Prediction from 3D Patterson Maps via Recycling Training Runs
- URL: http://arxiv.org/abs/2503.00143v1
- Date: Fri, 28 Feb 2025 19:40:09 GMT
- Title: RecCrysFormer: Refined Protein Structural Prediction from 3D Patterson Maps via Recycling Training Runs
- Authors: Tom Pan, Evan Dramko, Mitchell D. Miller, George N. Phillips Jr., Anastasios Kyrillidis,
- Abstract summary: $textttRecCrysFormer$ is a hybrid model that exploits the strengths of transformers to integrate experimental and ML approaches to protein structure determination from crystallographic data.<n>We show that $textttRecCrysFormer$ achieves good accuracy in structural predictions and shows robustness against variations in crystal parameters, such as unit cell dimensions and angles.
- Score: 7.642939155349805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining protein structures at an atomic level remains a significant challenge in structural biology. We introduce $\texttt{RecCrysFormer}$, a hybrid model that exploits the strengths of transformers with the aim of integrating experimental and ML approaches to protein structure determination from crystallographic data. $\texttt{RecCrysFormer}$ leverages Patterson maps and incorporates known standardized partial structures of amino acid residues to directly predict electron density maps, which are essential for constructing detailed atomic models through crystallographic refinement processes. $\texttt{RecCrysFormer}$ benefits from a ``recycling'' training regimen that iteratively incorporates results from crystallographic refinements and previous training runs as additional inputs in the form of template maps. Using a preliminary dataset of synthetic peptide fragments based on Protein Data Bank, $\texttt{RecCrysFormer}$ achieves good accuracy in structural predictions and shows robustness against variations in crystal parameters, such as unit cell dimensions and angles.
Related papers
- CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
We develop a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro)
CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes.
We utilize Foldseek to encode protein structures into "structure-sequences" and trained a protein Structural Sequence Language Model, SSLM.
arXiv Detail & Related papers (2024-10-21T02:21:56Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
We introduce a novel framework that enhances protein language models by integrating protein structural data.
The refined model, termed Protein Structure Transformer (PST), is further pretrained on a small protein structure database.
PST consistently outperforms the state-of-the-art foundation model for protein sequences, ESM-2, setting a new benchmark in protein function prediction.
arXiv Detail & Related papers (2024-01-26T12:47:54Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
Protein structure-based property prediction has emerged as a promising approach for various biological tasks.
Current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy.
Our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures.
arXiv Detail & Related papers (2023-10-14T08:43:42Z) - CrysFormer: Protein Structure Prediction via 3d Patterson Maps and
Partial Structure Attention [7.716601082662128]
A protein's three-dimensional structure often poses nontrivial computation costs.
We propose the first transformer-based model that directly utilizes protein crystallography and partial structure information.
We demonstrate our method, dubbed textttCrysFormer, can achieve accurate predictions, based on a much smaller dataset size and with reduced computation costs.
arXiv Detail & Related papers (2023-10-05T21:10:22Z) - AlphaFold Distillation for Protein Design [25.190210443632825]
Inverse protein folding is crucial in bio-engineering and drug discovery.
Forward folding models like AlphaFold offer a potential solution by accurately predicting structures from sequences.
We propose using knowledge distillation on folding model confidence metrics to create a faster and end-to-end differentiable distilled model.
arXiv Detail & Related papers (2022-10-05T19:43:06Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - PSP: Million-level Protein Sequence Dataset for Protein Structure
Prediction [34.11168458572554]
We present the first million-level protein structure prediction dataset with high coverage and diversity, named as PSP.
This dataset consists of 570k true structure sequences (10TB) and 745k complementary distillation sequences (15TB)
We provide in addition the benchmark training procedure for SOTA protein structure prediction model on this dataset.
arXiv Detail & Related papers (2022-06-24T14:08:44Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z) - Energy-based models for atomic-resolution protein conformations [88.68597850243138]
We propose an energy-based model (EBM) of protein conformations that operates at atomic scale.
The model is trained solely on crystallized protein data.
An investigation of the model's outputs and hidden representations finds that it captures physicochemical properties relevant to protein energy.
arXiv Detail & Related papers (2020-04-27T20:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.