Quantum illumination via frequency-mode-based correlation-to-displacement conversion
- URL: http://arxiv.org/abs/2503.00176v1
- Date: Fri, 28 Feb 2025 20:42:46 GMT
- Title: Quantum illumination via frequency-mode-based correlation-to-displacement conversion
- Authors: Xin Chen, Zhibin Ye,
- Abstract summary: Quantum illumination leverages entanglement to surpass classical target detection, even in high-noise environments.<n>A central challenge lies in designing optimal receivers to exploit this advantage.<n>We propose a frequency-mode entangled source with matched photon numbers, a heterodyne detection scheme for the returned signals across vast modes, and a cavity-enhanced quantum pulse gate for programmable mode processing.
- Score: 3.406797377411835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum illumination leverages entanglement to surpass classical target detection, even in high-noise environments. Remarkably, its quantum advantage persists despite entanglement degradation caused by environmental decoherence. A central challenge lies in designing optimal receivers to exploit this advantage, with the correlation-to-displacement conversion module emerging as a promising candidate. However, the practical implementation of the conversion module faces technical hurdles, primarily due to the vast number of modes involved. In this work, we address these challenges by proposing a frequency-mode entangled source with matched photon numbers, a heterodyne detection scheme for the returned signals across vast modes, and a cavity-enhanced quantum pulse gate for programmable mode processing. This integrated framework paves the way for the realization of practical quantum illumination systems.
Related papers
- Photonic Quantum Receiver Attaining the Helstrom Bound [0.9674145073701151]
We propose an efficient decomposition scheme for a quantum receiver that attains the Helstrom bound in the low-photon regime for discriminating binary coherent states.
We account for realistic conditions by examining the impact of photon loss and imperfect photon detection, including the presence of dark counts.
Our scheme motivates testing quantum advantages with cubic-phase gates and designing photonic quantum computers to optimize symbol-by-symbol measurements in optical communication.
arXiv Detail & Related papers (2024-10-29T07:08:39Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Fulfilling entanglement's optimal advantage via converting correlation
to coherence [0.966840768820136]
Entanglement boosts performance limits in sensing and communication.
We propose a conversion module to capture and transform the quantum correlation to coherent quadrature displacement.
Our module provides a paradigm of processing noisy quantum correlations for near-term implementation.
arXiv Detail & Related papers (2022-07-14T02:02:52Z) - Design Methodologies for Integrated Quantum Frequency Processors [0.0]
We introduce a model for the design of quantum frequency processors.
We estimate the performance of single and parallel frequency-bin Hadamard gates.
Our model is general, simple to use, and extendable to other material platforms.
arXiv Detail & Related papers (2022-04-26T13:57:12Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Fault-Tolerant Directional Couplers for State Manipulation in Silicon
Photonic-Integrated Circuits [0.0]
Photonic integrated circuits play a central role in current and future applications such as communications, sensing, ranging, and information processing.
Fault-tolerant quantum computing mandates very accurate and robust quantum gates.
We demonstrate high-fidelity directional couplers for single-qubit gates in photonic integrated waveguides.
arXiv Detail & Related papers (2022-04-07T11:36:29Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Non-Gaussian photonic state engineering with the quantum frequency
processor [0.7758302353877525]
Non-Gaussian quantum states of light are critical resources for optical quantum information processing.
We introduce a generic approach for non-Gaussian state production from input states populating discrete frequency bins.
arXiv Detail & Related papers (2021-08-18T17:58:42Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.