論文の概要: Cauchy Random Features for Operator Learning in Sobolev Space
- arxiv url: http://arxiv.org/abs/2503.00300v1
- Date: Sat, 01 Mar 2025 02:14:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:01.286801
- Title: Cauchy Random Features for Operator Learning in Sobolev Space
- Title(参考訳): ソボレフ空間における演算子学習のための因果ランダム特徴
- Authors: Chunyang Liao, Deanna Needell, Hayden Schaeffer,
- Abstract要約: 理論的保証と誤り境界を持つランダムな特徴演算子学習法を提案する。
カーネルベースの手法やニューラルネットワーク手法と比較して、提案手法は類似またはより良いテスト誤差を得ることができる。
- 参考スコア(独自算出の注目度): 8.160632714063905
- License:
- Abstract: Operator learning is the approximation of operators between infinite dimensional Banach spaces using machine learning approaches. While most progress in this area has been driven by variants of deep neural networks such as the Deep Operator Network and Fourier Neural Operator, the theoretical guarantees are often in the form of a universal approximation property. However, the existence theorems do not guarantee that an accurate operator network is obtainable in practice. Motivated by the recent kernel-based operator learning framework, we propose a random feature operator learning method with theoretical guarantees and error bounds. The random feature method can be viewed as a randomized approximation of a kernel method, which significantly reduces the computation requirements for training. We provide a generalization error analysis for our proposed random feature operator learning method along with comprehensive numerical results. Compared to kernel-based method and neural network methods, the proposed method can obtain similar or better test errors across benchmarks examples with significantly reduced training times. An additional advantages it that our implementation is simple and does require costly computational resources, such as GPU.
- Abstract(参考訳): 演算子学習は、機械学習アプローチを用いた無限次元バナッハ空間間の演算子の近似である。
この領域のほとんどの進歩はディープ・オペレーター・ネットワークやフーリエ・ニューラル・オペレータといったディープ・ニューラルネットワークの変種によって推進されているが、理論上の保証はしばしば普遍的な近似特性の形で行われている。
しかし、存在定理は、実際に正確な作用素ネットワークが取得可能であることを保証しない。
近年のカーネルベースの演算子学習フレームワークを基盤として,理論的保証と誤差境界を持つランダムな特徴演算子学習法を提案する。
ランダム特徴法は、カーネル法のランダム化近似と見なすことができ、トレーニングの計算要求を大幅に減らすことができる。
提案したランダム特徴量演算子学習法に対する一般化誤差解析と包括的数値結果について述べる。
カーネルベースの手法やニューラルネットワーク手法と比較して、提案手法は、トレーニング時間を大幅に短縮したベンチマーク例に対して、類似またはより良いテスト誤差を得ることができる。
もうひとつのメリットは、実装がシンプルで、GPUのような高価な計算リソースを必要とすることです。
関連論文リスト
- Operator Learning Using Random Features: A Tool for Scientific Computing [3.745868534225104]
教師付き演算子学習センターは、無限次元空間間のマップを推定するためにトレーニングデータを使用する。
本稿では,関数値のランダム特徴量法を提案する。
これは非線形問題に対して実用的な教師付き演算子学習アーキテクチャをもたらす。
論文 参考訳(メタデータ) (2024-08-12T23:10:39Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
我々は、訓練されたニューラル演算子におけるベイズの不確実性定量化を近似するための新しいフレームワークLUNOを紹介する。
我々の手法はモデル線形化を利用して(ガウス的)重み空間の不確実性をニューラル作用素の予測に推し進める。
これは関数型プログラミングのカリー化の概念の確率的バージョンとして解釈でき、関数値(ガウス的)ランダムプロセスの信念を導出することを示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
所望の予測関数に関する情報をニューラルネットワークトレーニングに明示的にエンコードできる、モチベーションの高い正規化手法を導出できることが示される。
本手法の有効性を実証的に評価し,提案手法がほぼ完全なセマンティックシフト検出と高度に校正された予測不確実性推定に繋がることを示す。
論文 参考訳(メタデータ) (2023-12-28T17:50:56Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains [13.56018270837999]
本稿では,ニューラルネットワークを任意の領域に拡張する簡単な手法を提案する。
このような直接スペクトル評価の効率的な実装*は、既存のニューラル演算子モデルと結合する。
提案手法により,ニューラルネットワークを任意の点分布に拡張し,ベースライン上でのトレーニング速度を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-05-31T09:01:20Z) - An Introduction to Kernel and Operator Learning Methods for
Homogenization by Self-consistent Clustering Analysis [0.48747801442240574]
本稿では,演算子学習パラダイムの数学的基盤に関する詳細な分析について述べる。
提案したカーネル演算子学習法は,グラフカーネルネットワークを用いて,マルチスケール均質化のための機械的縮小順序法を考案する。
論文 参考訳(メタデータ) (2022-12-01T02:36:16Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
Trained by Gradient Descent [95.94432031144716]
学習ネットワークの分析のための統合された非最適化フレームワークを提案する。
既存の保証は勾配降下により統一することができることを示す。
論文 参考訳(メタデータ) (2021-06-25T17:45:00Z) - A Simple and General Debiased Machine Learning Theorem with Finite
Sample Guarantees [4.55274575362193]
我々は、あらゆる機械学習アルゴリズムのグローバルまたはローカル機能を含む、漸近的不偏性機械学習定理を提供する。
この結果は、アナリストが現代の学習理論の速度を従来の統計的推論に翻訳するために使用できる、単純な条件のセットで決定される。
論文 参考訳(メタデータ) (2021-05-31T17:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。