論文の概要: High Dynamic Range Video Compression: A Large-Scale Benchmark Dataset and A Learned Bit-depth Scalable Compression Algorithm
- arxiv url: http://arxiv.org/abs/2503.00410v1
- Date: Sat, 01 Mar 2025 09:13:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:19:12.685209
- Title: High Dynamic Range Video Compression: A Large-Scale Benchmark Dataset and A Learned Bit-depth Scalable Compression Algorithm
- Title(参考訳): 高ダイナミックレンジビデオ圧縮:大規模ベンチマークデータセットと学習ビット深度スケーラブル圧縮アルゴリズム
- Authors: Zhaoyi Tian, Feifeng Wang, Shiwei Wang, Zihao Zhou, Yao Zhu, Liquan Shen,
- Abstract要約: 私たちはHDRVD2Kという大規模なHDRビデオベンチマークデータセットを最初に収集しました。
本稿では,HDRVD2Kをベースとして,HDRビデオのための最初の学習ビット深度スケーラブルビデオ圧縮(LBSVC)ネットワークを提案する。
- 参考スコア(独自算出の注目度): 18.71268431771477
- License:
- Abstract: Recently, learned video compression (LVC) is undergoing a period of rapid development. However, due to absence of large and high-quality high dynamic range (HDR) video training data, LVC on HDR video is still unexplored. In this paper, we are the first to collect a large-scale HDR video benchmark dataset, named HDRVD2K, featuring huge quantity, diverse scenes and multiple motion types. HDRVD2K fills gaps of video training data and facilitate the development of LVC on HDR videos. Based on HDRVD2K, we further propose the first learned bit-depth scalable video compression (LBSVC) network for HDR videos by effectively exploiting bit-depth redundancy between videos of multiple dynamic ranges. To achieve this, we first propose a compression-friendly bit-depth enhancement module (BEM) to effectively predict original HDR videos based on compressed tone-mapped low dynamic range (LDR) videos and dynamic range prior, instead of reducing redundancy only through spatio-temporal predictions. Our method greatly improves the reconstruction quality and compression performance on HDR videos. Extensive experiments demonstrate the effectiveness of HDRVD2K on learned HDR video compression and great compression performance of our proposed LBSVC network. Code and dataset will be released in https://github.com/sdkinda/HDR-Learned-Video-Coding.
- Abstract(参考訳): 近年,学習ビデオ圧縮(LVC)が急速に発展しつつある。
しかし,大規模かつ高品質なハイダイナミックレンジ(HDR)ビデオトレーニングデータがないため,HDRビデオ上のLVCはまだ探索されていない。
本稿では,HDRVD2Kという大規模HDRビデオベンチマークデータセットを初めて収集し,多種多様なシーンと複数のモーションタイプを特徴とする。
HDRVD2Kは、ビデオトレーニングデータのギャップを埋め、HDRビデオ上のLVCの開発を容易にする。
さらに,HDRVD2Kをベースとして,複数のダイナミックレンジのビデオ間のビット深度冗長性を効果的に活用し,HDRビデオのための最初の学習ビット深度スケーラブルビデオ圧縮(LBSVC)ネットワークを提案する。
そこで我々はまず,圧縮トーンマップした低ダイナミックレンジ(LDR)ビデオと,それ以前のダイナミックレンジに基づいて,時間空間の時空間予測のみによる冗長性を低減するのではなく,オリジナルのHDRビデオを効果的に予測する圧縮フレンドリなビット深度拡張モジュール(BEM)を提案する。
提案手法は,HDRビデオの再構成品質と圧縮性能を大幅に向上させる。
HDRビデオ圧縮におけるHDRVD2Kの有効性と,提案したLBSVCネットワークの高速圧縮性能について検討した。
コードとデータセットはhttps://github.com/sdkinda/HDR-Learned-Video-Coding.orgでリリースされる。
関連論文リスト
- Large Motion Video Autoencoding with Cross-modal Video VAE [52.13379965800485]
ビデオ可変オートエンコーダ(VAE)は、ビデオ冗長性を低減し、効率的なビデオ生成を容易にするために不可欠である。
既存のビデオVAEは時間圧縮に対処し始めているが、しばしば再建性能が不十分である。
本稿では,高忠実度ビデオエンコーディングが可能な,新規で強力なビデオオートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-12-23T18:58:24Z) - Diffusion-Promoted HDR Video Reconstruction [45.73396977607666]
高ダイナミックレンジ(LDR)ビデオ再構成は、低ダイナミックレンジ(LDR)フレームから交互に露出したHDRビデオを生成することを目的としている。
既存の作品の多くは回帰に基づくパラダイムにのみ依存しており、ゴーストのアーティファクトや飽和した地域での詳細の欠如といった悪影響につながっている。
本稿では,HDR-V-Diffと呼ばれるHDR映像再構成のための拡散促進手法を提案する。
論文 参考訳(メタデータ) (2024-06-12T13:38:10Z) - HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
既存のHDR NVS法は主にNeRFに基づいている。
訓練時間は長く、推論速度は遅い。
我々は新しいフレームワークHigh Dynamic Range Gaussian Splatting (-GS)を提案する。
論文 参考訳(メタデータ) (2024-05-24T00:46:58Z) - Towards Real-World HDR Video Reconstruction: A Large-Scale Benchmark Dataset and A Two-Stage Alignment Network [16.39592423564326]
既存の手法は主に合成データセットに基づいて訓練されており、実際のシーンでは性能が良くない。
HDRビデオ再構成のための大規模実世界のベンチマークデータセットであるReal-Vを提案する。
論文 参考訳(メタデータ) (2024-04-30T23:29:26Z) - Subjective Quality Assessment of Compressed Tone-Mapped High Dynamic Range Videos [35.19716951217485]
ストリーミングHDRビデオの視覚的品質に及ぼすトネマッピング演算子の影響を解析する。
我々は、圧縮トーンマップ付きHDRビデオの大規模主観的オープンソースデータベースを構築した。
論文 参考訳(メタデータ) (2024-03-22T09:38:16Z) - A FUNQUE Approach to the Quality Assessment of Compressed HDR Videos [36.26141980831573]
最先端のSOTA(State-of-art)アプローチでは、VMAFのような既製のビデオ品質モデルが強化され、非線形変換ビデオフレームで計算される。
ここでは,FUNQUE+というビデオ品質予測モデルの効率的なクラスが,より少ない計算コストで高いHDR映像品質予測精度を実現することを示す。
論文 参考訳(メタデータ) (2023-12-13T21:24:00Z) - Towards Efficient SDRTV-to-HDRTV by Learning from Image Formation [51.26219245226384]
モダンディスプレイは、高ダイナミックレンジ(WCG)と広色域(SDR)で映像コンテンツをレンダリングすることができる
利用可能なリソースの大部分は、まだ標準動的範囲(SDR)にある。
我々は、SDRTV/TVコンテンツの形成をモデル化し、SDRTV-to-TVタスクを定義し、分析する。
本手法は主に超高精細テレビコンテンツ向けに設計されており、4K解像度画像の処理に有効で軽量である。
論文 参考訳(メタデータ) (2023-09-08T02:50:54Z) - HDR Video Reconstruction with a Large Dynamic Dataset in Raw and sRGB
Domains [23.309488653045026]
高ダイナミックレンジ(HDR)ビデオ再構成は、低ダイナミックレンジ(LDR)ビデオと比較して視覚的品質が優れているため、ますます注目を集めている。
同時にLDRフレームを取得するのが難しいため、動的シーンのための実際のLDR-ペアはいまだに存在しない。
本研究では,2つの異なる露光画像を同時にキャプチャするスタッガーセンサを用いて,生領域とsRGB領域のHDRフレームに融合する手法を提案する。
論文 参考訳(メタデータ) (2023-04-10T11:59:03Z) - Towards Scalable Neural Representation for Diverse Videos [68.73612099741956]
Inlicit Neural representations (INR)は、3Dシーンや画像の表現において注目を集めている。
既存のINRベースの手法は、冗長な視覚コンテンツを持つ短いビデオの符号化に限られている。
本稿では,多種多様な視覚コンテンツを持つ長編・多作ビデオの符号化のためのニューラル表現の開発に焦点をあてる。
論文 参考訳(メタデータ) (2023-03-24T16:32:19Z) - Subjective Assessment of High Dynamic Range Videos Under Different
Ambient Conditions [38.504568225201915]
本稿では,HDRビデオの大規模主観的研究について紹介する。
圧縮やエイリアスなどの歪みがHDRビデオの品質に及ぼす影響について検討する。
この調査には計66人の被験者が参加し、2万人以上の世論調査が集められた。
論文 参考訳(メタデータ) (2022-09-20T21:25:50Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。