論文の概要: Using Machine Learning for move sequence visualization and generation in climbing
- arxiv url: http://arxiv.org/abs/2503.00458v1
- Date: Sat, 01 Mar 2025 11:50:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:21.727211
- Title: Using Machine Learning for move sequence visualization and generation in climbing
- Title(参考訳): 機械学習を用いた登山における移動シーケンスの可視化と生成
- Authors: Thomas Rimbot, Martin Jaggi, Luis Barba,
- Abstract要約: 本研究では,岩盤の移動シーケンス評価のための可視化ツールを開発した。
次に,3つの異なるトランスフォーマーモデルを用いて,単純なホールドシーケンス情報からの移動シーケンス予測について検討する。
- 参考スコア(独自算出の注目度): 35.1762496625647
- License:
- Abstract: In this work, we investigate the application of Machine Learning techniques to sport climbing. Expanding upon previous projects, we develop a visualization tool for move sequence evaluation on a given boulder. Then, we look into move sequence prediction from simple holds sequence information using three different Transformer models. While the results are not conclusive, they are a first step in this kind of approach and lay the ground for future work.
- Abstract(参考訳): 本研究では,スポーツクライミングにおける機械学習手法の適用について検討する。
従来のプロジェクトを拡張して,ある岩体上でのシーケンス評価を可視化するツールを開発した。
次に,3つの異なるトランスフォーマーモデルを用いて,単純なホールドシーケンス情報からの移動シーケンス予測について検討する。
結果は決定的ではないが、この種のアプローチの第一歩であり、将来の仕事の基盤となる。
関連論文リスト
- T-3DGS: Removing Transient Objects for 3D Scene Reconstruction [83.05271859398779]
ガウススプラッティングを用いた3次元シーン再構成のための入力ビデオから一貫したオブジェクトを除去する新しいフレームワークを提案する。
以上の結果から,既存の疎捕捉データセットにおける技術の現状と,新たに提案した高密度キャプチャ(ビデオ)データセットの大幅な改善が示された。
論文 参考訳(メタデータ) (2024-11-29T07:45:24Z) - Texture, Shape and Order Matter: A New Transformer Design for Sequential DeepFake Detection [57.100891917805086]
シーケンシャルディープフェイク検出は、順番に操作シーケンスを予測する新しいタスクである。
本稿では, テクスチャ, 形状, 操作順序の3つの視点を探索し, TSOM と呼ばれる新しいトランスフォーマーの設計について述べる。
論文 参考訳(メタデータ) (2024-04-22T04:47:52Z) - Randomized 3D Scene Generation for Generalizable Self-Supervised
Pre-Training [0.0]
球面高調波を用いた3次元シーン生成手法を提案する。
従来の定式化法をクリアマージンで上回り、実世界のスキャンとCADモデルを用いた手法を用いて、中間結果を得る。
論文 参考訳(メタデータ) (2023-06-07T08:28:38Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
自己教師型マルチタスク学習フレームワークを再考し、元の手法にいくつかのアップデートを提案する。
マルチヘッド・セルフアテンション・モジュールを導入することで3次元畳み込みバックボーンを近代化する。
モデルをさらに改良するために,セグメントマップの予測などの自己指導型学習タスクについて検討した。
論文 参考訳(メタデータ) (2022-07-16T19:25:41Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
本稿では,ロボットマニピュレータを用いた自己教師型把握対象セグメンテーションのための新しいフレームワークを提案する。
本稿では,モーションキューとセマンティック知識を共同で組み込んだ,エンドツーエンドのトレーニング可能な単一アーキテクチャを提案する。
我々の手法は、運動ロボットや3Dオブジェクトモデルの視覚的登録にも、正確な手眼の校正や追加センサーデータにも依存しない。
論文 参考訳(メタデータ) (2020-11-06T10:55:28Z) - Self-Supervised Learning of Part Mobility from Point Cloud Sequence [9.495859862104515]
動的対象を表す点列から,部品のセグメント化と動作特性の予測を行う自己教師型手法を提案する。
シーケンスの連続するフレーム間の相関を利用してトラジェクトリを生成する。
動作部分分割, 動き軸予測, 動き範囲推定など, 様々なタスクにおける提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-20T11:29:46Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
本研究は、現実の運転シナリオにおける周辺車両の今後の行動の順序を予測する問題について研究する。
最初のコントリビューションは、現実世界の運転シナリオに記録された軌跡をHDマップの助けを借りてアクションシーケンスに変換する自動手法である。
第2のコントリビューションは、よく知られたトラフィックエージェント追跡と予測データセットArgoverseへのメソッドの適用であり、結果として228,000のアクションシーケンスが生成される。
第3のコントリビューションは,交通エージェント,地図情報,社会状況の過去の位置と速度を,単一エンドツーエンドのトレーニング可能なニューラルネットワークに統合して,新たな行動シーケンス予測手法を提案することである。
論文 参考訳(メタデータ) (2020-04-29T14:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。