Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence
- URL: http://arxiv.org/abs/2503.00518v1
- Date: Sat, 01 Mar 2025 14:51:31 GMT
- Title: Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence
- Authors: Zhan Qu, Shuzhou Yuan, Michael Färber, Marius Brennfleck, Niklas Wartha, Anton Stephan,
- Abstract summary: We present an advanced, explainable machine learning method that utilizes Light Detection and Ranging (LiDAR) data for effective wake vortex detection.<n>A novel feature of our research is the use of a perturbation-based explanation technique, which clarifies the model's decision-making processes.<n>This combination of semantic segmentation and clustering for real-time wake vortex tracking significantly advances aviation safety measures.
- Score: 8.653321928148545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wake vortices - strong, coherent air turbulences created by aircraft - pose a significant risk to aviation safety and therefore require accurate and reliable detection methods. In this paper, we present an advanced, explainable machine learning method that utilizes Light Detection and Ranging (LiDAR) data for effective wake vortex detection. Our method leverages a dynamic graph CNN (DGCNN) with semantic segmentation to partition a 3D LiDAR point cloud into meaningful segments. Further refinement is achieved through clustering techniques. A novel feature of our research is the use of a perturbation-based explanation technique, which clarifies the model's decision-making processes for air traffic regulators and controllers, increasing transparency and building trust. Our experimental results, based on measured and simulated LiDAR scans compared against four baseline methods, underscore the effectiveness and reliability of our approach. This combination of semantic segmentation and clustering for real-time wake vortex tracking significantly advances aviation safety measures, ensuring that these are both effective and comprehensible.
Related papers
- ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
In autonomous driving, LiDAR and radar are crucial for environmental perception.
Recent state-of-the-art works reveal that the fusion of radar and LiDAR can lead to robust detection in adverse weather.
We propose a bird's-eye view fusion learning-based anchor box-free object detection system.
arXiv Detail & Related papers (2022-11-11T10:24:42Z) - Object recognition in atmospheric turbulence scenes [2.657505380055164]
We propose a novel framework that learns distorted features to detect and classify object types in turbulent environments.
Specifically, we utilise deformable convolutions to handle spatial displacement.
We show that the proposed framework outperforms the benchmark with a mean Average Precision (mAP) score exceeding 30%.
arXiv Detail & Related papers (2022-10-25T20:21:25Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
This paper proposes a system incorporating a Long Short-Term Memory (LSTM) Deep Learning Autoencoder based method with a novel dynamic thresholding algorithm and weighted loss function for anomaly detection of a UAV dataset.
The dynamic thresholding and weighted loss functions showed promising improvements to the standard static thresholding method, both in accuracy-related performance metrics and in speed of true fault detection.
arXiv Detail & Related papers (2022-03-09T14:16:14Z) - Attentional Feature Refinement and Alignment Network for Aircraft
Detection in SAR Imagery [24.004052923372548]
Aircraft detection in Synthetic Aperture Radar (SAR) imagery is a challenging task due to aircraft's discrete appearance, obvious intraclass variation, small size and serious background's interference.
In this paper, a single-shot detector namely Attentional Feature Refinement and Alignment Network (AFRAN) is proposed for detecting aircraft in SAR images with competitive accuracy and speed.
arXiv Detail & Related papers (2022-01-18T16:54:49Z) - Roadside Lidar Vehicle Detection and Tracking Using Range And Intensity
Background Subtraction [0.0]
We present the solution of roadside LiDAR object detection using a combination of two unsupervised learning algorithms.
The method was validated against a commercial traffic data collection platform.
arXiv Detail & Related papers (2022-01-13T00:54:43Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.