2DMCG:2DMambawith Change Flow Guidance for Change Detection in Remote Sensing
- URL: http://arxiv.org/abs/2503.00521v1
- Date: Sat, 01 Mar 2025 14:55:13 GMT
- Title: 2DMCG:2DMambawith Change Flow Guidance for Change Detection in Remote Sensing
- Authors: JunYao Kaung, HongWei Ge,
- Abstract summary: This paper proposes an efficient framework based on a Vision Mamba variant that enhances its ability to capture 2D spatial information.<n>The framework employs a 2DMamba encoder to effectively learn global contextual spatial information from multi-temporal images.<n>Experiments on benchmark datasets demonstrate the superior performance of our framework compared to state-of-the-art methods.
- Score: 4.18306618346671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing change detection (CD) has made significant advancements with the adoption of Convolutional Neural Networks (CNNs) and Transformers. While CNNs offer powerful feature extraction, they are constrained by receptive field limitations, and Transformers suffer from quadratic complexity when processing long sequences, restricting scalability. The Mamba architecture provides an appealing alternative, offering linear complexity and high parallelism. However, its inherent 1D processing structure causes a loss of spatial information in 2D vision tasks. This paper addresses this limitation by proposing an efficient framework based on a Vision Mamba variant that enhances its ability to capture 2D spatial information while maintaining the linear complexity characteristic of Mamba. The framework employs a 2DMamba encoder to effectively learn global spatial contextual information from multi-temporal images. For feature fusion, we introduce a 2D scan-based, channel-parallel scanning strategy combined with a spatio-temporal feature fusion method, which adeptly captures both local and global change information, alleviating spatial discontinuity issues during fusion. In the decoding stage, we present a feature change flow-based decoding method that improves the mapping of feature change information from low-resolution to high-resolution feature maps, mitigating feature shift and misalignment. Extensive experiments on benchmark datasets such as LEVIR-CD+ and WHU-CD demonstrate the superior performance of our framework compared to state-of-the-art methods, showcasing the potential of Vision Mamba for efficient and accurate remote sensing change detection.
Related papers
- CFMD: Dynamic Cross-layer Feature Fusion for Salient Object Detection [7.262250906929891]
Cross-layer feature pyramid networks (CFPNs) have achieved notable progress in multi-scale feature fusion and boundary detail preservation for salient object detection.
To address these challenges, we propose CFMD, a novel cross-layer feature pyramid network that introduces two key innovations.
First, we design a context-aware feature aggregation module (CFLMA), which incorporates the state-of-the-art Mamba architecture to construct a dynamic weight distribution mechanism.
Second, we introduce an adaptive dynamic upsampling unit (CFLMD) that preserves spatial details during resolution recovery.
arXiv Detail & Related papers (2025-04-02T03:22:36Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.<n>We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.<n>We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
Video anomaly detection (VAD) has been extensively researched due to its potential for intelligent video systems.<n>Most existing methods based on CNNs and transformers still suffer from substantial computational burdens.<n>We propose a lightweight and effective Mamba-based network named STNMamba to enhance the learning of spatial-temporal normality.
arXiv Detail & Related papers (2024-12-28T08:49:23Z) - LCD-Net: A Lightweight Remote Sensing Change Detection Network Combining Feature Fusion and Gating Mechanism [6.5655751924536006]
Remote sensing image change detection (RSCD) is crucial for monitoring dynamic surface changes.
Traditional CNN-based methods suffer from high computational complexity and large parameter counts.
We propose a lightweight Change Detection Network (LCD-Net) that reduces model size and computational cost while maintaining high detection performance.
arXiv Detail & Related papers (2024-10-14T10:33:30Z) - Remote Sensing Image Segmentation Using Vision Mamba and Multi-Scale Multi-Frequency Feature Fusion [9.098711843118629]
This paper introduces state space model (SSM) and proposes a novel hybrid semantic segmentation network based on vision Mamba (CVMH-UNet)
This method designs a cross-scanning visual state space block (CVSSBlock) that uses cross 2D scanning (CS2D) to fully capture global information from multiple directions.
By incorporating convolutional neural network branches to overcome the constraints of Vision Mamba (VMamba) in acquiring local information, this approach facilitates a comprehensive analysis of both global and local features.
arXiv Detail & Related papers (2024-10-08T02:17:38Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNet introduces an early fusion backbone to exploit both spatial and temporal features.
Experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods.
arXiv Detail & Related papers (2024-07-03T14:58:40Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.