LCD-Net: A Lightweight Remote Sensing Change Detection Network Combining Feature Fusion and Gating Mechanism
- URL: http://arxiv.org/abs/2410.11580v1
- Date: Mon, 14 Oct 2024 10:33:30 GMT
- Title: LCD-Net: A Lightweight Remote Sensing Change Detection Network Combining Feature Fusion and Gating Mechanism
- Authors: Wenyu Liu, Jindong Li, Haoji Wang, Run Tan, Yali Fu, Qichuan Tian,
- Abstract summary: Remote sensing image change detection (RSCD) is crucial for monitoring dynamic surface changes.
Traditional CNN-based methods suffer from high computational complexity and large parameter counts.
We propose a lightweight Change Detection Network (LCD-Net) that reduces model size and computational cost while maintaining high detection performance.
- Score: 6.5655751924536006
- License:
- Abstract: Remote sensing image change detection (RSCD) is crucial for monitoring dynamic surface changes, with applications ranging from environmental monitoring to disaster assessment. While traditional CNN-based methods have improved detection accuracy, they often suffer from high computational complexity and large parameter counts, limiting their use in resource-constrained environments. To address these challenges, we propose a Lightweight remote sensing Change Detection Network (LCD-Net in short) that reduces model size and computational cost while maintaining high detection performance. LCD-Net employs MobileNetV2 as the encoder to efficiently extract features from bitemporal images. A Temporal Interaction and Fusion Module (TIF) enhances the interaction between bitemporal features, improving temporal context awareness. Additionally, the Feature Fusion Module (FFM) aggregates multiscale features to better capture subtle changes while suppressing background noise. The Gated Mechanism Module (GMM) in the decoder further enhances feature learning by dynamically adjusting channel weights, emphasizing key change regions. Experiments on LEVIR-CD+, SYSU, and S2Looking datasets show that LCD-Net achieves competitive performance with just 2.56M parameters and 4.45G FLOPs, making it well-suited for real-time applications in resource-limited settings. The code is available at https://github.com/WenyuLiu6/LCD-Net.
Related papers
- EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged [3.3885253104046993]
We propose a novel deep learning framework named EfficientCD for remote sensing image change detection.
The framework employs EfficientNet as its backbone network for feature extraction.
The EfficientCD has been experimentally validated on four remote sensing datasets.
arXiv Detail & Related papers (2024-07-22T19:11:50Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNet introduces an early fusion backbone to exploit both spatial and temporal features.
Experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods.
arXiv Detail & Related papers (2024-07-03T14:58:40Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Siamese Meets Diffusion Network: SMDNet for Enhanced Change Detection in
High-Resolution RS Imagery [7.767708235606408]
We propose a new network, Siamese-U2Net Feature Differential Meets Network (SMDNet)
This network combines the Siam-U2Net Feature Differential (SU-FDE) and the denoising diffusion implicit model to improve the accuracy of image edge change detection.
Our method's combination of feature extraction and diffusion models demonstrates effectiveness in change detection in remote sensing images.
arXiv Detail & Related papers (2024-01-17T16:48:55Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
arXiv Detail & Related papers (2023-02-27T14:19:31Z) - Lightweight Salient Object Detection in Optical Remote-Sensing Images
via Semantic Matching and Edge Alignment [61.45639694373033]
We propose a novel lightweight network for optical remote sensing images (ORSI-SOD) based on semantic matching and edge alignment, termed SeaNet.
Specifically, SeaNet includes a lightweight MobileNet-V2 for feature extraction, a dynamic semantic matching module (DSMM) for high-level features, and a portable decoder for inference.
arXiv Detail & Related papers (2023-01-07T04:33:51Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - Feature Flow: In-network Feature Flow Estimation for Video Object
Detection [56.80974623192569]
Optical flow is widely used in computer vision tasks to provide pixel-level motion information.
A common approach is to:forward optical flow to a neural network and fine-tune this network on the task dataset.
We propose a novel network (IFF-Net) with an textbfIn-network textbfFeature textbfFlow estimation module for video object detection.
arXiv Detail & Related papers (2020-09-21T07:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.