RFWNet: A Lightweight Remote Sensing Object Detector Integrating Multiscale Receptive Fields and Foreground Focus Mechanism
- URL: http://arxiv.org/abs/2503.00545v2
- Date: Thu, 03 Jul 2025 14:01:54 GMT
- Title: RFWNet: A Lightweight Remote Sensing Object Detector Integrating Multiscale Receptive Fields and Foreground Focus Mechanism
- Authors: Yujie Lei, Wenjie Sun, Sen Jia, Qingquan Li, Jie Zhang,
- Abstract summary: This study proposes an efficient and lightweight RSOD algorithm integrating multiscale receptive fields and foreground focus mechanism.<n>The comprehensive experimental results demonstrate that RFWNet achieved 95.3% and 73.2% mean average precision.
- Score: 10.997183129304409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Challenges in remote sensing object detection(RSOD), such as high interclass similarity, imbalanced foreground-background distribution, and the small size of objects in remote sensing images, significantly hinder detection accuracy. Moreover, the tradeoff between model accuracy and computational complexity poses additional constraints on the application of RSOD algorithms. To address these issues, this study proposes an efficient and lightweight RSOD algorithm integrating multiscale receptive fields and foreground focus mechanism, named robust foreground weighted network(RFWNet). Specifically, we proposed a lightweight backbone network receptive field adaptive selection network (RFASNet), leveraging the rich context information of remote sensing images to enhance class separability. Additionally, we developed a foreground-background separation module(FBSM)consisting of a background redundant information filtering module (BRIFM) and a foreground information enhancement module (FIEM) to emphasize critical regions within images while filtering redundant background information. Finally, we designed a loss function, the weighted CIoU-Wasserstein loss (LWCW),which weights the IoU-based loss by using the normalized Wasserstein distance to mitigate model sensitivity to small object position deviations. The comprehensive experimental results demonstrate that RFWNet achieved 95.3% and 73.2% mean average precision (mAP) with 6.0 M parameters on the DOTA V1.0 and NWPU VHR-10 datasets, respectively, with an inference speed of 52 FPS.
Related papers
- MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection [10.135137525886098]
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance.<n>Existing multi-scale fusion methods help, but add computational burden and blur fine details.<n>We propose a unified fusion framework that tightly couples global context with local detail to boost detection performance.
arXiv Detail & Related papers (2025-06-15T02:54:25Z) - It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations [5.326302374594885]
In this paper, we propose a novel end-to-end IRSTD framework, termed LRRNet.<n>Inspired by the physical compressibility of cluttered scenes, our approach adopts a compression-reconstruction-subtraction paradigm.<n>Experiments on multiple public datasets demonstrate that LRRNet outperforms 38 state-of-the-art methods in terms of detection accuracy, robustness, and computational efficiency.
arXiv Detail & Related papers (2025-06-12T07:24:45Z) - ARFC-WAHNet: Adaptive Receptive Field Convolution and Wavelet-Attentive Hierarchical Network for Infrared Small Target Detection [2.643590634429843]
ARFC-WAHNet is an adaptive receptive field convolution and wavelet-attentive hierarchical network for infrared small target detection.<n>ARFC-WAHNet outperforms recent state-of-the-art methods in both detection accuracy and robustness.
arXiv Detail & Related papers (2025-05-15T09:44:23Z) - DPNet: Dynamic Pooling Network for Tiny Object Detection [12.331699924062196]
Resizing images is a common strategy to improve detection accuracy, particularly for small objects.<n>This paper proposes a Dynamic Pooling Network (DPNet) for tiny object detection to mitigate these issues.<n> Experiments on the TinyCOCO and TinyPerson datasets show that DPNet can save over 35% and 25% GFLOPs, respectively.
arXiv Detail & Related papers (2025-05-05T17:13:35Z) - LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection [18.804394986840887]
LEGNet is a lightweight network that incorporates a novel edge-Gaussian aggregation module for low-quality remote sensing images.
Our key innovation lies in the synergistic integration of Scharr operator-based edge priors with uncertainty-aware Gaussian modeling.
LEGNet achieves state-of-the-art performance across five benchmark datasets while ensuring computational efficiency.
arXiv Detail & Related papers (2025-03-18T08:20:24Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
Near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots.
Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises.
To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc.
We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered.
A model-based deep learning network is designed to restore the
arXiv Detail & Related papers (2022-11-28T01:28:33Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
We propose a one-stage framework called Pyramid Grafting Network (PGNet) to extract features from different resolution images independently.
An attention-based Cross-Model Grafting Module (CMGM) is proposed to enable CNN branch to combine broken detailed information more holistically.
We contribute a new Ultra-High-Resolution Saliency Detection dataset UHRSD, containing 5,920 images at 4K-8K resolutions.
arXiv Detail & Related papers (2022-04-11T12:22:21Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
We present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator.
Our method achieves state-of-the-art performance in accuracy with moderate inference speed and computational overhead for training.
arXiv Detail & Related papers (2021-12-13T14:37:20Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - A Light-Weight Object Detection Framework with FPA Module for Optical
Remote Sensing Imagery [12.762588615997624]
We propose an efficient anchor free object detector, CenterFPANet.
To pursue speed, we use a lightweight backbone and introduce the asymmetric revolution block.
This strategy can improve the accuracy of remote sensing image object detection without reducing the detection speed.
arXiv Detail & Related papers (2020-09-07T12:41:17Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.