It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations
- URL: http://arxiv.org/abs/2506.10425v2
- Date: Sun, 15 Jun 2025 08:49:51 GMT
- Title: It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations
- Authors: Guoyi Zhang, Guangsheng Xu, Siyang Chen, Han Wang, Xiaohu Zhang,
- Abstract summary: In this paper, we propose a novel end-to-end IRSTD framework, termed LRRNet.<n>Inspired by the physical compressibility of cluttered scenes, our approach adopts a compression-reconstruction-subtraction paradigm.<n>Experiments on multiple public datasets demonstrate that LRRNet outperforms 38 state-of-the-art methods in terms of detection accuracy, robustness, and computational efficiency.
- Score: 5.326302374594885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection (IRSTD) remains a long-standing challenge in complex backgrounds due to low signal-to-clutter ratios (SCR), diverse target morphologies, and the absence of distinctive visual cues. While recent deep learning approaches aim to learn discriminative representations, the intrinsic variability and weak priors of small targets often lead to unstable performance. In this paper, we propose a novel end-to-end IRSTD framework, termed LRRNet, which leverages the low-rank property of infrared image backgrounds. Inspired by the physical compressibility of cluttered scenes, our approach adopts a compression--reconstruction--subtraction (CRS) paradigm to directly model structure-aware low-rank background representations in the image domain, without relying on patch-based processing or explicit matrix decomposition. To the best of our knowledge, this is the first work to directly learn low-rank background structures using deep neural networks in an end-to-end manner. Extensive experiments on multiple public datasets demonstrate that LRRNet outperforms 38 state-of-the-art methods in terms of detection accuracy, robustness, and computational efficiency. Remarkably, it achieves real-time performance with an average speed of 82.34 FPS. Evaluations on the challenging NoisySIRST dataset further confirm the model's resilience to sensor noise. The source code will be made publicly available upon acceptance.
Related papers
- DISTA-Net: Dynamic Closely-Spaced Infrared Small Target Unmixing [55.366556355538954]
We propose the Dynamic Iterative Shrinkage Thresholding Network (DISTA-Net), which reconceptualizes traditional sparse reconstruction within a dynamic framework.<n>DISTA-Net is the first deep learning model designed specifically for the unmixing of closely-spaced infrared small targets.<n>We have established the first open-source ecosystem to foster further research in this field.
arXiv Detail & Related papers (2025-05-25T13:52:00Z) - Neural Spatial-Temporal Tensor Representation for Infrared Small Target Detection [3.7038542578642724]
We introduce a Neural-represented spatial-temporal model (NeurSTT) for infrared small target detection.<n>NeurSTT enhances spatial-temporal correlations in background approximation, thereby supporting target detection in an unsupervised manner.<n>Visual and numerical results across various datasets demonstrate that our method outperforms the suboptimal method on $256 times 256$ sequences.
arXiv Detail & Related papers (2024-12-23T05:46:08Z) - Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection [0.4398130586098371]
We propose a novel pinwheel-shaped convolution (PConv) as a replacement for standard convolutions in the lower layers of the backbone network.<n>PConv better aligns with the pixel Gaussian spatial distribution of dim small targets, enhances feature extraction, significantly increases the receptive field, and introduces only a minimal increase in parameters.<n>We construct a new benchmark, SIRST-UAVB, which is the largest and most challenging dataset to date for real-shot single-frame infrared small target detection.
arXiv Detail & Related papers (2024-12-22T12:04:02Z) - Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
This study introduces a Sparse Differential Directionality prior (SDD) framework.
We leverage the distinct directional characteristics of targets to differentiate them from the background.
We further enhance target detectability with a saliency coherence strategy.
A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model.
arXiv Detail & Related papers (2024-07-22T04:32:43Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
We propose SpirDet, a novel approach for efficient detection of infrared small targets.
We employ a new dual-branch sparse decoder to restore the feature map.
Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-02-08T05:06:14Z) - RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection [10.202639589226076]
This work proposes an interpretable deep network for detecting infrared dim targets, dubbed RPCANet.
Our approach formulates the ISTD task as sparse target extraction, low-rank background estimation, and image reconstruction.
By unfolding the iterative optimization updating steps into a deep-learning framework, time-consuming and complex matrix calculations are replaced by theory-guided neural networks.
arXiv Detail & Related papers (2023-11-02T01:21:12Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
Single-frame infrared small target detection is considered to be a challenging task.
Due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target.
We propose an enhancing feature learning network (EFLNet) to address these problems.
arXiv Detail & Related papers (2023-07-27T09:23:22Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.