論文の概要: The Uncertainty of Machine Learning Predictions in Asset Pricing
- arxiv url: http://arxiv.org/abs/2503.00549v1
- Date: Sat, 01 Mar 2025 16:32:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:10.288630
- Title: The Uncertainty of Machine Learning Predictions in Asset Pricing
- Title(参考訳): アセット価格における機械学習予測の不確かさ
- Authors: Yuan Liao, Xinjie Ma, Andreas Neuhierl, Linda Schilling,
- Abstract要約: 予測されたリターンのニューラルネットワーク予測は、古典的ノンパラメトリック手法と同じ分布を持つことを示す。
これらの予測信頼区間を不確実な逆投資枠組みに組み込む。
- 参考スコア(独自算出の注目度): 2.0249250133493195
- License:
- Abstract: Machine learning in asset pricing typically predicts expected returns as point estimates, ignoring uncertainty. We develop new methods to construct forecast confidence intervals for expected returns obtained from neural networks. We show that neural network forecasts of expected returns share the same asymptotic distribution as classic nonparametric methods, enabling a closed-form expression for their standard errors. We also propose a computationally feasible bootstrap to obtain the asymptotic distribution. We incorporate these forecast confidence intervals into an uncertainty-averse investment framework. This provides an economic rationale for shrinkage implementations of portfolio selection. Empirically, our methods improve out-of-sample performance.
- Abstract(参考訳): 資産価格での機械学習は、通常、期待されるリターンをポイント推定として予測し、不確実性を無視します。
我々は,ニューラルネットワークから得られた予測リターンに対して,予測信頼区間を構築するための新しい手法を開発した。
予測されたリターンのニューラルネットワーク予測は、従来の非パラメトリック手法と同じ漸近分布を共有し、標準誤差に対するクローズドフォーム表現を可能にする。
また, 漸近分布を得るために, 計算可能なブートストラップを提案する。
これらの予測信頼区間を不確実な逆投資枠組みに組み込む。
これはポートフォリオ選択の実装を縮小する経済的根拠を提供する。
実証的に,本手法はサンプル外性能を向上する。
関連論文リスト
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Tackling Missing Values in Probabilistic Wind Power Forecasting: A
Generative Approach [1.384633930654651]
そこで本研究では,欠落した値の処理と目標の予測を無関心に行い,未知の値を同時に予測することを提案する。
従来の「インプット、予測」パイプラインと比較して、提案手法は連続的なランク付け確率スコアにおいてより良い性能を達成する。
論文 参考訳(メタデータ) (2024-03-06T11:38:08Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
我々は、条件付き可逆ニューラルネットワーク(cINN)を用いて、データの基盤となる分布を学習し、この分布からの不確実性を任意の決定論的予測と組み合わせる。
我々のアプローチは、複雑な統計的損失関数やさらなる仮定を伴わずに、確率的予測を簡単に作成できる。
論文 参考訳(メタデータ) (2023-02-03T15:11:39Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
本研究では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
本研究では,不確実性の推定値の品質が深層アンサンブルから得られた値と一致することを示す。
論文 参考訳(メタデータ) (2022-11-17T20:13:39Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。