論文の概要: Channel-Attentive Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2503.00578v1
- Date: Sat, 01 Mar 2025 18:00:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:01.520546
- Title: Channel-Attentive Graph Neural Networks
- Title(参考訳): チャネル検出型グラフニューラルネットワーク
- Authors: Tuğrul Hasan Karabulut, İnci M. Baytaş,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データの表現学習の最先端を定めている。
ほとんどのモデルで使用されるメッセージパッシングメカニズムは、GNNの深さが増加するにつれて、過度なスムース化に悩まされる。
本研究では,過度なスムース化を緩和する適応型チャネルワイドメッセージパッシング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Graph Neural Networks (GNNs) set the state-of-the-art in representation learning for graph-structured data. They are used in many domains, from online social networks to complex molecules. Most GNNs leverage the message-passing paradigm and achieve strong performances on various tasks. However, the message-passing mechanism used in most models suffers from over-smoothing as a GNN's depth increases. The over-smoothing degrades GNN's performance due to the increased similarity between the representations of unrelated nodes. This study proposes an adaptive channel-wise message-passing approach to alleviate the over-smoothing. The proposed model, Channel-Attentive GNN, learns how to attend to neighboring nodes and their feature channels. Thus, much diverse information can be transferred between nodes during message-passing. Experiments with widely used benchmark datasets show that the proposed model is more resistant to over-smoothing than baselines and achieves state-of-the-art performances for various graphs with strong heterophily. Our code is at https://github.com/ALLab-Boun/CHAT-GNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの表現学習の最先端を定めている。
オンラインソーシャルネットワークから複雑な分子まで、多くのドメインで使用されている。
ほとんどのGNNはメッセージパッシングのパラダイムを活用し、様々なタスクで強力なパフォーマンスを実現している。
しかし、ほとんどのモデルで使用されるメッセージパッシング機構は、GNNの深さが増加するにつれて過度なスムース化に悩まされる。
オーバースムーシングは、無関係なノードの表現間の類似性の増加により、GNNのパフォーマンスを低下させる。
本研究では,過度なスムース化を緩和する適応型チャネルワイドメッセージパッシング手法を提案する。
提案モデルであるChannel-Attentive GNNは、近隣ノードとその機能チャネルへの参加方法を学ぶ。
したがって、メッセージパッシング中にノード間で非常に多様な情報を転送することができる。
広範に使用されているベンチマークデータセットを用いて実験したところ,提案モデルはベースラインよりも過度なスムースティングに耐性があり,ヘテロフィリーが強いグラフに対して,最先端のパフォーマンスを実現することがわかった。
私たちのコードはhttps://github.com/ALLab-Boun/CHAT-GNNにあります。
関連論文リスト
- Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
本稿では,ローカル類似性(LocalSim)を用いて,プラグイン・アンド・プレイモジュールとしても機能するノードレベルの重み付き融合を学習する。
そこで本研究では,より情報性の高いマルチホップ情報を抽出するための,新規かつ効率的な初期残留差分接続(IRDC)を提案する。
提案手法,すなわちローカル類似グラフニューラルネットワーク(LSGNN)は,ホモ親和性グラフとヘテロ親和性グラフの両方において,同等あるいは優れた最先端性能を提供できる。
論文 参考訳(メタデータ) (2023-05-07T09:06:11Z) - Reducing Over-smoothing in Graph Neural Networks Using Relational
Embeddings [0.15619750966454563]
本稿では,GNNにおけるオーバー・スムーシング問題の影響を緩和する,シンプルで効率的な手法を提案する。
我々の手法は他の手法と組み合わせて最高の性能を与えることができる。
論文 参考訳(メタデータ) (2023-01-07T19:26:04Z) - Neo-GNNs: Neighborhood Overlap-aware Graph Neural Networks for Link
Prediction [23.545059901853815]
グラフニューラルネットワーク(GNN)は,グラフ構造データの学習に広く応用されている。
リンク予測のために隣接重畳された近傍から有用な構造特徴を学習する近傍オーバーラップ対応グラフニューラルネットワーク(Neo-GNN)を提案する。
論文 参考訳(メタデータ) (2022-06-09T01:43:49Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
グラフニューラルネットワーク(GNN)は、固有のネットワーク機能の抽出に重点を置いている。
GNNのための強化型メタラーナを提案する。
AdaGNNは、リッチで多様なノード近傍情報を持つアプリケーションに対して非常によく機能する。
論文 参考訳(メタデータ) (2021-08-14T03:07:26Z) - Boost then Convolve: Gradient Boosting Meets Graph Neural Networks [6.888700669980625]
グラデーションブースト決定木(gbdt)は,異種データに対して他の機械学習手法よりも優れていることが示されている。
我々は,gbdt と gnn を共同で訓練し,両世界のベストを勝ち取る新しいアーキテクチャを提案する。
我々のモデルは、GNNの勾配更新に新しい木を適合させることにより、エンドツーエンドの最適化の恩恵を受ける。
論文 参考訳(メタデータ) (2021-01-21T10:46:41Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力な技術である。
本研究では,ノードとグラフ表現を対話的に学習する統合モデルAdamGNNを提案する。
14の実世界のグラフデータセットに対する実験により、AdamGNNはノードとグラフの両方のタスクにおいて17の競合するモデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2020-10-01T07:52:06Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。